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This Ph.D. thesis investigates how interactions with autonomous systems can be

simulated to explore a wide range of scenarios before autonomous driving tech-

nology is deployed to the public. The advent of autonomous vehicles creates new

challenges for driving simulation: user experience, non-driving related tasks, and

driver-driver interactions become more relevant. Given the new challenges emerg-

ing intelligent systems bring, this dissertation develops three new simulator sys-

tems that allow interactions to unfold more freely than traditional implementa-

tions. This allows researchers to discover how and which design choices matter

for seamless interaction and safe introduction to the public.

The first simulator explores how interactions between a driver/passenger and

an autonomous vehicle unfold, especially in critical traffic situations; the second

extended this concept to include real-world traffic. The third simulator enabled

the examination of the interaction between traffic participants, specifically driver-

driver interactions, and their strategies to resolve ambiguous traffic situations.

Besides enabling immersive, replicable, and reusable research, the simulators

are designed to capture and reproduce rich data streams from participants’ reac-

tions. The unified view of these data streams facilitates the reconstruction of the

interaction through qualitative behavioral analysis.

The thesis concludes with an outlook on how these methods and simulators,

in particular the discovery-based approach, could find applications within the re-

search fields of Human-Robot Interaction and Human-Computer Interaction.
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CHAPTER 1

INTRODUCTION

Automotive designers and human factors engineers use driving simulation en-

vironments to test the usability, safety, and driver performance impacts of inter-

faces and interactions. Driving simulators allows researchers to play through sce-

narios to explore interactions, particularly for new technologies, designs, and crit-

ical situations. By constructing test scenarios, researchers can use driving simula-

tors to explore the interaction between people, technology, and the environment.

These systems can act as a testbed for designers, allowing them to develop and

prototype for specific situations rapidly and to see how interactions between peo-

ple and technology change over time.

With recent developments in vehicular technologies, systems that used to be

manually controlled have become more self-directed, the likes of which we have

not yet seen in our everyday lives or in a car. This change leads to new questions

for automotive designers and the simulators they use. Questions of how control is

exerted over a vehicle change into questions of how interaction changes the pas-

senger/driver experience of using autonomous features of a vehicle.

In this thesis, I explore how researchers can use simulation to observe and dis-

cover these interactions. How can we construct environments and scenarios to

let interactions play out and to understand better how these factors influence the

development of trust and teamwork? This can be between multiple people or be-

tween people and technology. More generally, this approach of simulating rich in-

teractive environments can be used to address a wealth of (interaction) design and

behavior questions in the context of Human-Robot Interaction (HRI) and Human-

Computer Interaction (HCI). While this thesis pivots around the interaction with
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(partially) Autonomous Vehicles (AVs), each simulator is also contextualized as a

tool for broader research questions.

In particular, I have looked at how researchers can discover new interactions as

they unfold with AV technologies before these are deployed in vehicles in the real

world. The different systems each look at a different orbit of interaction that ex-

tends around the research subject (as driver /passenger). These “orbits of interac-

tion” refer to the different levels or contexts at which interactions with autonomous

vehicles occur, ranging from individual interactions inside an autonomous vehicle

to broader interactions in the traffic environment and even specific exploration

of how ambiguous traffic situations get resolved. Understanding these various

orbits allows researchers to analyze and comprehend the complexities of human-

automation interactions and the implications for designing autonomous systems.

In this chapter, I first discuss the contemporary context for driving simulation,

as larger changes in driving and technology demand new capabilities and features

for our driving simulation environments. I then discuss key features of driving

simulation for research, and map out existing simulators to identify the gaps be-

tween what currently exists and what the contemporary context demands that my

research seeks to fill. I then discuss different Orbits of Interaction, which I use to

structure the interaction around AVs and use to illustrate the difference between

the simulators I have developed for my thesis. Finally, outline the three projects

that make up the key contributions of this thesis.

1.1 Contemporary Context for Driving Simulation

The development of new simulator technologies is based on the research ques-

tions and design artifacts motivated by newly introduced technologies that control
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objects in our environment. The most recent developments involve features lead-

ing to an increase in autonomy. Prominent examples of such systems are the in-

troduction of Electric Vehicles (EVs), new “personal” transportation concepts, and

advanced driver assistant systems. In this context, simulators allow designers and

human factor engineers to test and perfect a system’s design before it is released

to the public. As AV technologies mature, new forms of interaction with these ma-

chines will emerge. These will present unique challenges for how we think about

technology use, trust, safety, and privacy. In this section, we will explore these

new technologies and what new interaction design challenges they bring, with a

particular focus on those that the use of simulators can assess.

1.1.1 Autonomous Vehicles

The level of automation available in vehicles has increased over the last couple of

years to the point where Advanced Driver Assistant Systems (ADAS) are available

in many vehicles (see [168]). These systems monitor the vehicle’s surrounding and

the driver’s inputs to predict future outcomes and use that information to either

inform the driver or augment the vehicle’s input to avoid/correct lousy driving

decisions. The deployment of this technology is a stepping stone towards systems

that can act more and more independently, leading to full AVs.

AV technology has the potential to revolutionize transportation as we know it.

The Society of Automotive Engineers (SAE) has formalized these steps of increas-

ing automation into five different levels of automation. These levels range from

no automation at Level - 0 to full automation at Level - 5 (see Figure 1.1). This

commonly accepted framework constructs a shared understanding of technolo-

gies’ capabilities and limitations for AVs.
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Figure 1.1: The five levels of automation with the different features and examples.
Credit: SAE International

Levels of Automation

The automation levels are also important for work on simulators. They dictate

the capability of what the simulator needs to be able to replicate. More so, it guides

what kinds of scenarios the simulator needs to immerse the participant in. The

requirements for the simulators can be loosely clustered into three different groups

shown below:

Levels 1 & 2 For these lower levels of automation, the simulation requirements

are similar to what traditional driving simulators provide. The simulation needs

to be able to provide programmatic access to the participant input to augment
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the driving controls to prototype the behaviors of Level 1 & 2 “support” systems.

Hence, “augment” the driving task but do not take control.

Levels 3 & 4 In these levels, the AV can drive parts without the intervention of a

(supervising) driver. This also implies that control needs to be taken and returned

to the driver potentially multiple times during a single trip. These control tran-

sitions are critical and rely on a seamless interface. To design these interactions

for a trustful and safe transition of control, simulators require the ability to drive

autonomously and monitor the drive and driver.

Level 5 This level of automation challenges the concept of what a car is; with-

out the requirement to have standard control interfaces, the vehicle transportation

space can change significantly. It could be used for other activities and using more

communal seating arrangements. This is a new challenge for simulators, as many

are built around preconceived notions about what a vehicle’s interior looks like

and how a vehicle is used. Simulating prototypes and interaction design concepts

for this level requires new tools to stage scenarios incorporating Level 5 AVs. Pro-

totyping and interaction design for this level needs completely new methods and

simulation to address this level of automation.

1.1.2 Non-Driving Related Tasks

Non-driving related tasks (NDRTs) refer to activities that drivers engage in while

operating a vehicle but that are unrelated to driving. These tasks can include using

mobile devices, interacting with in-vehicle infotainment systems,fand or engaging

in various forms of multitasking. Understanding the impact of these tasks on driv-

ing performance is crucial for improving road safety and designing effective user

interfaces.
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As vehicles become more autonomous, the role of drivers is expected to change

as well. With higher levels of automation, drivers may have more time and oppor-

tunities to engage in NDRTs. However, it is vital to study the effects of these tasks

on drivers’ attention, situational awareness, and response capabilities, especially

for levels of automation (Levels 1 through 4). To help guide the development of

the interactions and interruptions of AVs, researchers have identified potential dis-

tractions and designed appropriate guidelines for interfaces to ensure that NDRTs

do not compromise safety.

Furthermore, as vehicles become more autonomous, the nature and types of

NDRT may evolve. For example, drivers may shift from traditional manual tasks

to more complex cognitive activities or the user of entertainment. Simulators and

their methodologies must address these new challenges in understanding and

managing NDRTs in the context of AV. In particular, vehicles of Level 3 and up

might require participants to engage in a secondary task more intentionally to en-

sure they remain awake to take over control when necessary [147].

1.1.3 Other Innovations in Personal Transport

These changes in technological capabilities, especially the introduction of Level 5

automation, will likely also change how we relate to and own “vehicles”. This will

likely lead to disseminating more contemporary transport models such as ride-

sharing [218]. The idea of ride-sharing is a transportation model where individ-

uals share a vehicle for a specific journey arranged through mobile apps. At an

urban scale, new forms of personal transport have the potential to reduce traffic

congestion, improve resource use, and increase accessibility and affordability of

transportation services.
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As AV technology advances, ride-sharing can more easily provide on-demand

transportation without human drivers. These interaction design challenges in-

clude effectively communicating the shared nature of the vehicle and facilitating

seamless coordination and communication among passengers. Personal safety,

trust, privacy, user control, and efficient passenger coordination are all crucial con-

siderations for designing user-centered interfaces.

1.1.4 Implications for Driving Research

From AVs to ride-sharing, the various innovations in the transportation space

bring new design and interaction challenges, especially as technology starts to act

more proactively in our environment. Simulators to study some of the questions

around these issues already exist. In the following section, I will show the related

simulator work and highlight towards the end why new solutions are worth ex-

ploring, both for transportation work and, more broadly, HRI/HCI research.

1.2 Driving Simulation for Research

Driving simulators play a critical role in human-centered automotive research

applications. They allow researchers to create safe and replicable stimuli, en-

abling rapid and safe empirical exploration of how people will interact with in-

terface/behavior designs in use with transportation technology.

In this section, I will outline key features that driving simulators need to have

to support driving research and discuss how existing simulators serve those pur-

poses. As part of this work, I identify gaps in the landscape that my thesis work

skills to address.

Driving simulators span from low-cost driving simulators, like City Car Driv-
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ing 1 & Grand Theft Auto-based OpenIV 2, to high-fidelity immersion driving

simulators, like the National Advanced Driving Simulator at the University of

Iowa [60] or Ford’s VIRTTEX simulator [12]. Slob (2008) and Serje and Acuña(2019)

offer an overview of simulators [181, 186]. These more traditional driving simula-

tors looked at high-risk scenarios and vehicle-interface evaluation [130] before full

product development.

The two key dimensions which I will use to situate my driving simulation work

are Combined Immersion and Replicability/Reuse. Combined Immersion is an essential

criterion for the work done in simulator platforms to ecological validity [107, 189].

Replicability/Reuse is the cornerstone of replicable science [26, 55]. The dimension of

Combined Immersion tries to create the dimension of immersion by combining dif-

ferent forms of simulated stimuli that influence a participant’s immersion. Most

prominently, we know of visual stimuli and motion stimuli. To simplify the com-

parison, I clustered the work into three separate classes of simulators. The different

classes loosely build upon each other and describe an increasing level of realism

that the system can achieve. Although immersion has been extensively studied,

new challenges for interaction design and discovery-based work require more im-

mersive experiences to elicit naturalistic responses to increasingly nuanced scenar-

ios.

The Replicability/Reuse dimension discerns the ease with which other researchers

can replicate and extend a system. For interaction research, tool and material ac-

cess is a core requirement for reproducing research results and establishing a new

fidelity and understanding status quo. By emphasizing these dimensions, my re-

search addresses the gaps in the existing literature. It provides a verified first step

1http://citycardriving.com
2http://openiv.com
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Figure 1.2: A view of the two dimensions Combined Immersion and Replicability &
Reuse and how they intersection in this framework.

towards future research in behavior and interaction design for HRI and HCI and,

as an instance, in AV research.

Combined Immersion

As people move through the real world, they have become attuned to draw-

ing information out of the motion and actions of agents (other people, animals)

and objects (cars, bikes) to predict intent and future actions [105]. Simulators for

vehicles and robots will need to be able to reproduce these behaviors and allow

for the modification of such subtle cues by designers. The simulation needs to be

immersive enough to elicit naturalistic responses [16, 138] and allow for adaptable

behaviors by the system to the elicited responses from the participant to let interac-

tion fully unfold. Previous work has shown that immersion is crucial in how close

to naturalistic a response can be elicited. As an example, prior work showed that

perceived danger and immersion are lower and sleepiness is higher in a driving

simulator than in a real car [85, 91] highlighting the need to create an as realistic as

possible experience for the participant.
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Figure 1.3: Simulator using an Oculus DK2 as the main Display technology. (March
19, 2015) By Nan Palmero from San Antonio, TX, USA. Used under (CC BY 2.0)

The Combined Immersion dimension references multiple stimuli that combine to

create an immersive experience for the participant and collectively shape the ex-

perience of driving in a car. Visual stimuli in different levels of fidelity are always

part of a driving simulator; sometimes, there is a simple computer screen, projec-

tors, or a VR headset. Similarly, acoustic stimuli are frequently included. A major

distinguishing factor in participant’s immersion and system complexity motion

stimuli [95]. Replicating the inertial forces (motion stimuli) is a significant chal-

lenge for driving simulation due to the technical complexity involved in replicat-

ing the felt motion. Motion replication as the dominant dimension is motivated by

psychological studies that point to the importance of inertial and vestibular cues

to distance perception and steering (please see [110]).

Stationary Simulators The first category comprises stationary simulators that do
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not provide any motion simulation. They often use regular monitors or screens

and sometimes feature a vehicle cabin 1.4. More recently deployed simulators

might also feature Virtual Reality (VR) (see Figure 1.3) headsets since the tech-

nology has become commercially available. These simulators can have some sim-

ulated tactile fidelity by vibrating the vehicle cabin, participant seat, vehicle, or

steering. Despite these drawbacks, these simulators can be very cost-effective due

to the limited hardware requirements and often can be portable, especially when

deployed with VR headsets. These simulators are particularly useful for capturing

a diverse participant pool of people as they can easily be transported to different

locations.

Motion Replication The second group comprises simulators that use some mo-

tion simulation (e.g., [29]). The seat or vehicle cabin can be moved and rotated

to replicate the sense of acceleration for the participant. These simulators’ vi-

sual fidelity ranges significantly depending on their cost and specific application.

Some racing simulators [1, 37] only feature a wide computer screen setup mounted

to a fast-moving base, while other of the advanced motion base simulators like

NADS [60] feature high-fidelity projection screens around an entire vehicle cabin.

Motion-replicating simulators can quickly become expensive, especially for simu-

lators with more than three degrees of freedom. These high-end, high degree-of-

freedom driving systems that integrate driving-like motion are costly, e.g., NADS

had an initial price tag of $80MM [72]. However, they only created accelerations

that are a fraction of the realistic acceleration [209].

(Extended) Vehicle The third group with the highest fidelity are simulators that

utilize actual vehicles as part of their systems. These simulators often use head-

sets [71, 216] or the Wizard of Oz (WoZ) [139] method in combination with cars

driving in traffic or testing areas to create the most realistic AV simulation experi-
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Figure 1.4: Static Driving simulator with vehicle cabin and three projector screens
at Cornell Tech NYC. Credit: Wendy Ju.

ence. In-vehicle screens and/or WoZ can be used to recreate particular scenarios,

while video cameras and other tracking technologies can be used to recreate the

vehicle’s motion for analysis later [14, 15, 137]. In particular acoustic, tactile, and

motion are perfectly replicated. At the same time, the visual fidelity depends on

the deployed display technology, be that a prototype interface, mixed-reality (XR)

headset screen, or display.

Immersion Requirements for Simulators As mentioned in Section 1.2 many dif-

ferent types of stimuli exist that, when combined, create an immersive experience

for the participants. While visual fidelity plays a crucial role in this work, it is

essential to include additional immersive stimuli by using real-world elements
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to complete the immersive picture. This is to construct a convincing experience

for the participant. The more closely the driving experience resembles real-world

driving scenarios, the more likely we can capture naturalistic responses from a par-

ticipant.

Replicability/Reuse

Replicability/Reuse is the second dimension to compare existing simulators. Sim-

ilar to the Combined Immersion dimension, it is a loosely constructed scale that

distinguishes the projects dependent on how much of the system’s source code

and blueprints is accessible and helpful for replication and extensions of the pre-

sented setup. The existing work is grouped into increasing levels of replicability

and reuse. This is based on software availability, framework dependencies, and

hardware agnosticism.

The replicability spectrum ranges from Bespoke Simulators to open Research Plat-

forms, each integrating hardware and software components into a single tool. As-

sessing the specific reusability of simulators becomes challenging due to its de-

pendency on technological advancements and hardware availability in the future.

Thus, the clustering of existing systems emphasizes important aspects of their re-

producibility.

Most replicable simulators should lean towards Research Platforms to facilitate a

range of work in this field. For this thesis, a Research Platform should fulfill the

following characteristics:

Accessibility Publication of hardware and software details, study protocols, and

example data.

Usability Demonstration of proof of concept implementation and study.
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Adaptability Implementation using modular components and popular and estab-

lished frameworks (e.g., Unreal) [65, 196].

Extensible OpenSource & reusable, scalable.

Some of the key groupings for these simulators are as follows:

Bespoke Simulators are closed sources and often rely on specific hardware and

software. Many of these systems exist only once and are purpose-built for certain

tasks. [12, 13, 33, 42, 71, 216]

Partially open-source Many research simulators fall into this category, where

parts of the simulating systems are open-source. Still, they are only designed to

operate on specific hardware or subsystems. The hardware dependency, in partic-

ular, makes replication difficult. [6, 75, 76, 131, 220]

Open-Source and Hardware Agnostic Introducing common hardware compo-

nents (e.g., standard displays, VR headsets) and common software interfaces to

address this equipment (e.g., Steam VR, Unity, Unreal Engine) has made repli-

cation and reuse much more accessible. Not only can different types of hard-

ware with the same software, but editing and adjusting the virtual environment

is also more accessible. The major drawback of these systems is that the software

is not designed to be reused for other tasks, i.e., bespoke in their implementa-

tion. [7, 29, 68, 74, 95, 117, 142]

Research Platforms These are open-source driving or traffic simulators that use

standard hardware components and interfaces and are developed with a modular

approach allowing for a wide of reuse for the system and its components. [14, 16,

30, 77]

In the following sections, I will describe the existing simulators mapped onto
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1.2 to discuss the replicability of the different solutions. It is essential to empha-

size the significance of replication, especially considering its historical challenges,

as we as a community are concerned about a replication crisis [27, 49] and issues

around long-term research artifact preservation [78]. As an academic community,

we should strive to build systems that can be replicated as it allows for the expan-

sion of this kind of research and promotes inclusivity in the field.

Replicability of Static Simulators

Static simulators can be some of the most replicable simulators. Some simple

simulators only require a regular computer and screen. More recent implemen-

tations might use commercial VR headsets for participants to experience an im-

mersive VR environment of the drive [17]. It is also possible to extend the virtual

world experience by also placing and calibrating a physical steering wheel and

foot pedals in front of a participant while they view the virtual world as it passes

by.

Head-mounted displays allow changing interface elements like screens and ac-

tuators in virtual rather than physical reality, enabling a broader range of experi-

mentation. VR tools such as the Meta Quest2 Meta Quest Pro, Pico 4, HTC Vive

(Pro) LEAP Motion, and Unity and Unreal game engines are low-cost and available

for a few hundred USD/EUR. However, dynamic motion (forces felt on the body)

is often absent from research settings using this method. Therefore, this method

has similar limitations to a mid-range driving simulator.

These VR-based driving simulations have recently emerged as an inexpensive

way to have participants experience high immersions for relatively low cost; the

field of view offered by VR headsets enables researchers to run urban driving sce-

narios, for example, which once were only possible for researchers with 270 de-
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grees or greater field of view displays setups [121, 206].

Due to their relatively interchangeable hardware requirements, these are some

of the most replicable systems. Rudimentary PC-based software simulators and

screen-based simulators like City Car Sim [42] are inherently hardware-agnostic.

The primary way these simulators vary amongst the replicability dimension is in

their implementation and use of common platforms and libraries. Simulators that

use standard rendering engines like Unity [68, 196] or Unreal [48, 65] encourage

extension and replication since these are popular tools in the gaming industry.

They will likely be around to justify development efforts on simulators using these

engines.

Replicability of Motion Simulators

These higher-fidelity simulators are often difficult to replicate, requiring spe-

cialized, potentially expensive hardware and software. Online communities have

released Open-Source implementations of racing simulators like [30, 117]. These

designs could form a foundation for a unified research platform that facilitates

replicability. Future publications should broaden the perspective on their imple-

mentation of the use of different hardware components.

Using commercially available products is an alternative form of deploying a mo-

tion base simulator. Companies like [131] provide simulation systems with some

motion capability but are often limited to one to three degrees of limited motion.

That said, many, if not most, higher-order simulators are bespoke implemen-

tations, like, e.g., Toyota’s high-performance simulator [156] or Ford’s VIRTTEX

Simulator [82]. The size of these systems implies the need for special facilities (like

power and space), making their more general distribution difficult. This makes

16



these types of simulators expensive [72] and challenging to replicate. A scientific

exploration of process that invite many researchers and perspectives.

For research purposes, the level of fidelity in visual scene construction or phys-

ical motion does not always need to be higher to be better; what is desirable may

vary depending on the experiments the simulator is supporting. For example, a

simulator used for human-factors experiments with people that have medical im-

pairments (such as [89, 164]) might have relatively low physical motion fidelity but

need to very accurately capture the reaction time of the participant to a visual stim-

ulus. In contrast, a system to test the motor responses of older drivers might need

better control and dynamics models to simulate realistic responses properly. For

human-machine interaction studies, the point of driving simulators is to help de-

signers understand users’ behavioral responses to displays or notification systems

in the car and events in or outside the vehicle [4].

Replicability of On-road Driving Simulation

Visual-based simulators become less effective for studies and design scenarios

where drivers are only sometimes engaged in the driving task, like [147]. The level

of immersion of a person staring at a tablet (in the context of a driver monitoring

task) in a darkened and visual-only simulator is unlikely to be the same as that of

a person engaged in a driving task. Addressing distraction and questions of atten-

tion management become more critical with the introduction of autonomous fea-

tures (see Levels 3&4 in Section 1.1.1); this makes on-road simulation more critical.

Using an actual car on real roads addresses the physical, bodily, environmental,

and social reality that is the basis of a realistic experience [102]. It increases the

transfer, fidelity, immersion, and presence of the simulated experience in a way

that is difficult to replicate, even in high-end simulators. Motion sickness is also
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less of an issue as there is less incongruence between the perceived environment

and the kinesthetically sensed environment.

VW researchers pioneered on-road autonomous driving simulation with the

Wizard on Wheels protocol, using a specially reconfigured vehicle that featured

a hidden second driver in the load compartment who could take over parts of the

driving task, varying the degree of automation from manual control to complete

automatic control [177]. More recently, Stanford researchers developed a more

straightforward protocol that put a partition between a driving wizard and study

participants who were given a fake steering wheel which they could use to ”take

over” automation [14, 208]. These vehicles are instrumented to capture the study

participant and the context for each drive [46, 122] since there is an inherent vari-

ability to any study on the public roadway. The Stanford platform also permits

remote Wizard of Oz interaction between drivers and remote wizards [137].

Replication of these methods depends on the research goal and what kinds of

designs are supposed to be evaluated. Solutions like the approach by VW [177]

require significant technical expertise and material to deploy safely. These are pre-

requisites most universities cannot fulfill. On the other hand, deploying a WoZ

system like Daze [139] deployed by Stanford does not require special equipment

and achieves the simulated driving experience through clever placement of a vi-

sual barrier between the driver and participant.

1.2.1 Measuring Driving Interaction

Most immersive driving simulators aim to elicit naturalistic responses from the

participant. In this context, an essential functionality of a simulated then is to be

able to record these reactions and interactions as they unfold. The simulator’s
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output, i.e., the raw data streams, must provide enough granularity to reconstruct

what and why a scenario unfolded. Looking at traditional simulator work, many

measures already exist (e.g., Steering Wheel Reversals, or Time to Line Crossing [101]).

These measures have been traditionally designed to provide data for questions of

control and distraction, often described as driving performance measures. They come

from a time when drivers were the sole controlling entity in a car or truck.

Early work in automotive gestural interfaces [5] and speech interactions [70, 83,

125, 150], for example, make use of the driving simulator and focus on driving as

a primary task that designed interactions should not interfere with.

Driving Performance covers a whole host of measures that attempt to assess a

driver’s performance in a vehicle. Many of these measures are standardized and

published in SAE J2944TM [101] after being refined and validated in previous aca-

demic research. A portion of these measures looks at control problems. With this

control approach, these measures fall close to traditional driving research, where

distinct conditions lead to specific, often predefined outcomes.

Some examples of Driving Performance measures are headway distance [101, p.50],

response time [101, pp.38-43], and steering entropy [101, p.137]. These key perfor-

mance indicators are used to compare different study conditions, to evaluate ve-

hicle designs and potential traffic rule changes. These measures are particularly

useful when research questions have been clearly defined. So much such that reg-

ulations on the control of vehicles make use of these definitions [101, p.8]. Such

that the impact of new vehicle designs (e.g., media center) can be evaluated and

compared using these predefined metrics and deemed safe.

However, as we move towards modern vehicle technologies, these traditional
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methods and approaches become less relevant; some of the measures presented in

this J2944TM remain just as relevant when looking at the interaction between peo-

ple and AVs and should always be included when possible. In particular, measures

that assess attention, NDRT, and general passenger experience are still relevant.

Driving Psychology

In the field of driving psychology, driving behavior models have been exam-

ined to understand the mechanism of accidents caused by human errors in partic-

ular [113, 146]. According to these models, driving can be clustered into three hier-

archical levels: strategic, tactical, and operational. These levels correspond to their

information processing demands, similar to Rassmussen’s skill-rule-knowledge

(SRK) behavior model [171]. The tasks for each level are described as trip planning,

maneuvers to handle prevailing circumstances, and low-level lateral and longitu-

dinal controls, respectively.

However, when examining how interactions between people and technology

unfold, these existing and predefined measures do not necessarily cover the nu-

ance required to reconstruct the causal signaling that leads to the interaction (e.g.,

when negotiating ambiguous traffic situations). Simulators need to provide data

streams for measures that, more openly, can lead to discovery-based research such

that serendipitous and unfolding interactions can be reconstructed.

Driving Simulation for Autonomy and Driver Assistance

AVs bring new concerns, requiring new models for visual display systems, con-

trol interfaces, audio alerts, and interaction [3, 58]. Many experiments for driv-

ing simulation involving automation are controlled “transition of control” stud-

ies [80, 145]. However, some, such as [151, 176], have taken a more designerly

and improvisational approach to sharing or transitioning control with automa-
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tion. This design- and development-oriented use of driving simulation are also

gaining traction for non-automation uses; the Intel Skyline simulator, for exam-

ple, is focused on making it easy to prototype interactions between the vehicle and

brought-in devices such as phones and tablets [6].

1.2.2 Measuring Qualitative Experience

Qualitative measures (e.g., open-ended interviews and behavioral coding) pro-

vide a valuable means to capture naturalistic responses in research and offer dis-

tinct advantages over quantitative measures. Unlike quantitative measures, which

often rely on predefined hypotheses and structured data collection, qualitative ap-

proaches embrace open-ended exploration and allow a deeper understanding of

human interactions with technology and design.

Participants can naturally interact with the technology by developing uncon-

strained environments in sensory-rich simulators. Researchers can then observe

and analyze how interactions naturally unfold without imposing predetermined

constraints. This approach enables a more authentic exploration of how interac-

tions take place in real-world contexts, offering insights into the complexities and

nuances of human behavior and technology interaction.

Open, discovery-focused methods make it possible to uncover serendipitous

combinations of events to test and discover new ways in which interaction unfolds.

In contrast to more traditional simulators and measures, the simulators presented

in this thesis utilize real-world influences on how the scenarios are constructed

and how they are let to unfold. This open approach to creating scenarios with

open-world influences allows researchers to explore new and unforeseen combi-

nations of scenarios. The main drawback is that these methods’ findings are often
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not easily generalizable.

Methods such as behavioral coding allow us to systematically analyze partici-

pants’ behaviors, discern patterns, and uncover the cues they attend to and inter-

pret. Through this approach, we gain insights into the dynamics of interactions,

identifying subtle nuances and contextual factors that quantitative data alone may

overlook. This more open and discovery-based research approach enables us to ex-

plore and comprehend the multi-faceted nature of human-automation interactions

after specific interactions have been identified. They can sometimes be codified

and turned into new quantitative metrics.

As the field moves towards interaction design questions with the introduction

of Level 3 & 4 autonomous vehicles, requirements for driving simulators change.

One could expect that other immersive dimensions, other than refining driving

physics, will gain more attention, like immersion and scenario flexibility, become

more important.

1.2.3 Opportunities for Simulators

The existing research in the driving simulator field exhibits some gaps that pro-

vide room for my contributions. Firstly, current simulators tend to be high-fidelity,

complex, and expensive, relying on specialized hardware to replicate the felt mo-

tion to a limited extent. This cost and complexity make replication of work at

other research institutes challenging, which restricts accessibility for researchers

and limits the communities’ ability to validate published results.

Secondly, the open discovery-based approach, which allows for serendipitous

interactions between people and AVs to unfold, remains largely unexplored in sim-

ulator work. By integrating designed simulated scenarios with real-world traffic
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environments, my work captures a wide range of scenarios and unveils unforeseen

combinations, leading to novel insights into technology design.

To enable this kind of open, discovery-based research, the simulators presented

in this thesis all incorporate methods for capturing the richness and complexity of

these interactions while driving. They are to provide the means to uncover deeper

insights, understand participant perspectives, and explore the intricate interplay

between human behavior and their surroundings, be it other human traffic partic-

ipants or AVs.

1.3 Driving Simulation for Different Orbits of Interaction

New vehicle technologies bring new challenges for interface and interaction de-

sign. All the while, graphic and computational technologies also become more

capable. New simulators can be conceived as devices that help explore possible

future interactions.

With three distinct projects, I look at how interactions with and through (au-

tonomous) vehicles can take place. Each method has its own “orbit” within which

deployment is beneficial. In this document, I present them in a growing fashion.

From the simulation of scenarios “inside an AV” to navigating through the envi-

ronment “around the AV” to interactions with “Other Road Users”. The following

section introduces these different orbits of interaction before the following chapters

describe each project in more detail. Furthermore, it is described how other re-

searchers have picked it up.

All simulators facilitate a discovery-focused research methodology, and while in

this incarnation, they are considered interaction with AVs, lessons, and concepts

can be carried over to other kinds of interaction research questions with automa-
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tion, transport, and robotics. This prospective applications are described in the

final chapter (see Chapter 6).

1.3.1 Inside an Autonomous Vehicle

After the publication of VR-OOM as a system [73] and its evaluation as a user

simulator platform [74], work continued on development and testing to improve

the system’s key performance factors (e.g., tracking reliability and ease-of-use).

These improvements led to new capabilities; while before, VR-OOM was only ca-

pable of running in large open areas like a black lake (see study in [74], the current

version allows for testing on regular roads and in traffic (when a researcher drives

the car).

In its various iterations, VR-OOM explores how interactions inside the car could

occur and how this method can evaluate people’s behaviors and reactions inside

an AV unfold. As part of this thesis, I briefly discuss the original system, its short-

comings, and how it was improved and conclude with a description of the capa-

bilities of the improved system.

1.3.2 Around the Autonomous Vehicle

In the next phase, the research focused on evaluating interactions between a

driver outside environment. To afford a perspective on real-world objects, the sim-

ulator needs to support the pass-through of the visual elements, which requires an

XR headset that can show both the real and virtual worlds simultaneously. This

means the participant will see an extended or augmented visual presentation of

the natural world’s surroundings.

While similar to VR-OOM, the deployment is significantly more challenging due
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to higher accuracy and refresh rate requirements than in a VR application. The

benefit is that it does allow for much more realistic scenarios and even allows for

testing where the participants can drive. This Mixed Reality(XR) implementation

of the VR-OOM simulated was extended to include and renamed to XR-OOM [76].

Early implementation tests were published under [75].

1.3.3 Other Road Users

For AVs to adapt to interact with other drivers and to adapt to local norms, it is

critical to understand how those norms differ and to profile how it varies across

geographical locations. While ethnographers have qualitatively described regional

differences in driving style, AVs would need data-driven statistical models for AVs

to recognize how local drivers are signaling through hand/body movement and

motion of their vehicles.

1.4 Outline of Thesis Research Projects

For this thesis, I have developed three different driving simulators that address

each of the different orbits of interaction previously outlined. The first simulator,

VR-OOM, explores how VR interactions between a rider and an AV unfold, pro-

viding system details and implementation suggestions for replication. VR-OOM’s

main contribution is of a technical nature providing insights into the technical chal-

lenges of deploying such a system and the required performance from tracking and

VR systems.

The second, XR-OOM, extends the concepts from VR-OOM concept to include

real-world traffic. The main contribution of the simulator is the constraints that

I describe that emerged as the pilot study results. I also published XR-OOM’s
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software, SOP, to aid in the replication of this work.

The third simulator, StrangeLand, then looked at the interaction between traffic

participants, specifically driver-driver interactions, and their strategies to resolve

ambiguous traffic situations. ReRun, initially developed as an addition to Strange-

Land, was used for post-study analysis of such studies. With both systems, we

have created a research platform that can be used for a whole host of AV and HRI-

related research questions. The platform was evaluated with multiple studies and

has been refactored to become more stable, provide more data, and support more

simultaneous clients.

To disseminate approaches to discovery-focused research methods and to en-

courage replication of this work, the systems are developed to use openly available

software and affordable hardware component. Furthermore, the publications de-

tail the use of the simulators and include shared resources such as links to source

code and study materials and code used for analysis. (Please see Appendix A.1 for

links to the source code used in this project.)
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CHAPTER 2

THE EXPERIENCE INSIDE OF AN AUTONOMOUS VEHICLE

Figure 2.1: VR-OOM allows participants to experience the physical sensations of
the real world with controlled virtual environments and events.
Photo by Arjan Reef.

The closest orbit of interaction assesses how drivers or passengers inside a (semi)

autonomous vehicle (AV) experience their trip. How, in particular, critical traffic

situations are being perceived, and how designed behaviors of the vehicle and

its interior play a role in that perception. The Virtual Reality- On-rOad driving

siMulation (VR-OOM)1 system allows for prototyping for interfaces and driving

experience inside of the vehicle.

In the following chapter, we will discuss the premise of VR-OOM, what it set out

1This chapter reuses material from the original CHI publication [74] and master the-
sis [73]. Those works were co-authored with Jamy Li, Vanessa Evers, and Wendy Ju, but I was the
lead author of those papers and the primary researcher on that body of work.
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to do, and how it was developed further after its initial publication. We demon-

strate its current capabilities to simulate scenarios and to immerse the participant

in a test scenario. The chapter concludes with a look at possible future work and

work that has cited the original publication.

2.1 VR-OOM: Original Overview

The original VR-OOM system and research protocol enable researchers to run

on-road studies with controlled events, simulate autonomous driving in a higher

fidelity environment, and prototype a wide range of human-vehicle interactions

and interfaces. In the paper [74], we provide a detailed description of VR-OOM’s

system design and setup and an initial validation study of the system. Similar to

the other methods discussed in this thesis, VR-OOM is relatively low-cost, as it

uses consumer-grade entertainment and gaming hardware within a standard pas-

senger vehicle. The system was open-sourced, including the software, 3D models,

and course designs of VR-OOM, to lower the barrier for other automotive user

interface designs to engage with experimentation and research to increase the va-

riety, quantity, quality, and safety of the systems and interactions created.

The original implementation of VR-OOM had several drawbacks that impacted

its usability and application range. Firstly, it had limited tracking capabilities as it

relied on sensors with limited accuracy. In particular, speed was captured using

OBD2, which has build inaccuracies, while the vehicle’s orientation was measured

using an early-generation integrated circuit IMU with high drift. This drift-prone

implementation restricted experiments to empty parking lots where the driver had

to compensate for the virtual vehicle’s predicted path.

Secondly, the research driver had to simultaneously observe the real world to
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avoid obstacles while monitoring a secondary virtual screen displaying the view

from the virtual vehicle. This dual tasking imposed a high cognitive load on the

driver, limiting the range of scenarios that could be explored.

Moreover, the requirement of using an empty parking lot constrained the type

and size of the scenarios that could be used even further.

Additionally, the tracking of the (virtual Reality) VR headset inside the vehi-

cle was limited due to the lack of easy integration with VR software at the time.

Only rotational tracking of the headset was possible, neglecting positional track-

ing, although this limitation was deemed acceptable as head movement relative to

the vehicle was minimal. Addressing this limitation became crucial in subsequent

versions.

Lastly, the graphical fidelity was restricted by hardware limitations, especially

as VR-ready PCs and laptops suitable for operating inside a moving vehicle (given

the limited power availability) were not widely available then.

Many of these limitations were acceptable for the original implementation of a

prototype to test its use as a simulator. Furthermore, many of these limits were also

due to the limits of the (affordable) technology at the time. Especial spacial track-

ing hardware for VR applications has seen significant advances since the introduc-

tion of the Oculus DK1, the headset that starts the current VR-hype cycle [185].

2.1.1 In-car VR as a Research Platform

CHI researchers have recently investigated the possibility of using VR in cars

with head-mounted displays (HMDs). The CarVR system [93] tracks a non-virtual

car’s motion and renders the corresponding visual perspective of a passenger in
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the virtual space, which is used to play an arcade-like shooting game. The authors

found that moving the game in concert with the car’s motion caused less discom-

fort than playing the game while the vehicle was parked. McGill et al. looked

more carefully at how the correspondence of motion between the visual display

using HMDs and the car’s motion affected motion sickness [141]. They found that

motion sickness would represent an obstacle to using VR in the vehicle in real-

world conditions. However, both research projects used smartphone-based VR.

Honda’s DreamDrive [19], demoed at the 2017 Consumer Electronics Show in Las

Vegas in January, suggests that many of the issues with these research systems can

be circumvented by using higher-end VR systems with higher visual refresh rates

and by using the car’s CAN bus data to more accurately map the virtual world

movement to the vehicle’s actual movement.

VR-OOM was inspired by military flight simulation. Bachelder et al.’s Fused Re-

ality system [13] enables pilots wearing VR headsets to fly real planes in real skies

while experiencing simulated situations. This system is used to help pilots practice

take-offs and landings 30,000 feet in the air, where there is no threat of ground col-

lision. It can also be used to simulate mid-air refueling or formation flying without

the danger of mid-air collision. Fused Reality provides a higher-fidelity simula-

tion environment than ground-based simulators because the aircraft is real and in

motion; only what the pilot sees is virtual [32]. To leverage the benefits of Fused

Reality in the in-car VR research space, we created VR-OOM. This novel low-cost

virtual reality system operates in a moving car where the car’s physical motion is

mapped to the virtual road environment.

VR-OOM introduces a novel in-vehicle driving simulation system that takes ad-

vantage of low-cost virtual reality technology breakthroughs to create more im-
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Figure 2.2: VR-OOM System Diagram (excluding the wizard driver)

mersive experiences than a traditional lab-based driving simulator, allowing for

greater flexibility in the test environment than everyday on-road driving. This

technology enables us to extend on-road driving simulation by injecting virtual

objects, interfaces, and environments into the driving context, fusing the physical

reality of the car with the simulated scenarios we have created.

The VR-OOM system and research protocol enable researchers to run on-road

studies with controlled events, simulate autonomous driving in a higher fidelity

environment, and prototype a wide range of human-vehicle interactions and in-

terfaces. We provide a detailed description of VR-OOM’s system design and setup

and an initial validation study of the system. VR-OOM is relatively low-cost, as it

uses consumer-grade entertainment and gaming hardware within a standard pas-

senger vehicle. We are open-sourcing the software, 3D models, and course designs

of VR-OOM. We hope that lowering the barriers to automotive user interface de-

sign and experimentation will increase the variety, quantity, quality, and safety of

the systems and interactions created.
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Figure 2.3: View from the participant’s point of view.

2.1.2 Critique of Initial Publication

Critiques of the system mainly concerned the quality of the graphics in the VR

rendering. At least three participants commented on this. The user experience of

VR-OOM can be enhanced by providing high-fidelity graphical rendering. How-

ever, we were able to get natural responses to traffic events from participants with

the current low-fidelity graphics (see Figure 2.3). Therefore, to assess responses,

the graphics quality may not be essential. Fortunately, improving upon this as-

pect of VR-OOM is relatively straightforward. It involves the digital design of a

consistent and complete environment filled with assets like houses, cars, people,

benches, trees, and other objects. Additionally, aspects such as light rendering in

the virtual world could be improved by fine-tuning the build in Unity.

Practical Improvements

Other critiques of VR-OOM concerned the physical components of the platform.

One participant mentioned, ”I am missing the pedals. After the last round, the driver

was parking very close to the other car, and I noticed I was pressing my foot down. Just to

brake. The reflex of pressing my foot down.” People who drive regularly may incline

to press the foot pedals or switch on a light. The current study focused on partic-

ipants’ tendency to grab the steering wheel. From this comment, other reflexive
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behaviors can likely be similarly investigated.

In the current system implementation, the VR-Camera is fixed relative to the car

after the calibration, but the rotation is decoupled between the headset and the

car. This means that the vehicle and the headset determine their orientation in-

dependently. The noise in the sensors used to determine orientation cause both

components to drift apart slowly over time. This is why it was necessary to re-

calibrate the participants viewing direction after every condition in the proof of

concept implementation.

This issue could be circumvented by using higher-quality IMUs or by imple-

menting a tracking solution to determine the VR headset’s position and rotation

relative to the car. Consumer grade room tracking solutions cannot operate in a

moving reference frame, so the system needs to extend open source solutions like

OSVR2 or use other tracking methods like marker tracking. The addition of posi-

tional tracking would allow the participant to move their head around in the car

interior more freely.

Latency is another aspect that affects the quality of a VR experience. Suppose

the latency between head motion and the displayed image becomes too great

(> 75ms [207]). In that case, the participant’s perception and motor control will

be affected, influencing how naturally they can act in the virtual environment.

How the delay between the tracked car motion affects well-being and immersion

is unclear. The frame rate of the VR operating system also affects latency. While

90 frames per second ( f /s) are typically recommended for VR [44], this project ran

at about 60 f /s. This was due to the computational overhead of the Wizard View.

Future implementations will need to address this either through native plug-ins

2Open Source Virtual Reality http://www.osvr.org/
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for video capture and better timing within the frame 3 or simply by using more

powerful computing hardware.

Participants’ qualitative experiences and the experimenter’s observations indi-

cate the applicability of a low-cost Fused Reality car simulator such as VR-OOM

to assess people’s genuine responses to driving situations. This first pilot study

also offered directions for technical improvements to increase the immersion and

practicability of the system. Moreover, this proof of concept validation provides

insights for applying VR-OOM for on-road testing and development of AVs.

2.2 Improvements for Scenario Flexibility

Initial development on VR-OOM focused on addressing previously established

drawbacks. The improvements include several changes.

Firstly, better hardware was used to improve performance. The IMU, the

core tracking sensor of the system, was replaced by a more performant version.

The new hardware could be calibrated, specifically the MTI-300 by Xsens (now

Movella) with Automatic Heading Correction. This significantly reduces the drift

of the sensor, keeping the headset orientation consistent vehicle’s reference frames.

Additionally, hardware improvements allowed for higher visual quality through

higher-quality rendering and better (higher density) displays built into the head-

set.

Secondly, a simplified model of Roosevelt Island, the area, was modeled as a

geometric ground truth in which the sim was deployed. This model serves as a

validation tool for tracking and system performance.

3https://medium.com/google-developers/real-time-image-capture-in-unity-458de1364a4c
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Thirdly, the OBD2 sensor for speed measurement was replaced with data pro-

vided on the vehicles’ CAN bus from the internal odometer. This change improves

the accuracy and responsiveness of the speed reading.

Lastly, a real-time manual adjustment mechanism was added to allow re-

searchers to correct tracking errors and control the participant’s experience while

driving through the simulated world. Ultimately, these improvements enable the

use of vehicles on regular public roads instead of being limited to specific empty

areas or parking lots.

2.2.1 Roosevelt Island’s First Digital Twin

For VR-OOM, the use of a digital twin is beneficial for a variety of reasons.

Firstly, it allows for a virtual representation of the physical bounds of a test track

(in our case Roosevelt Island). Changes and modifications to the study track can

be tested before implementing them in the real world. The original digital twin

used in VR-OOM was modeled after satellite imagery. It was later extended many

times and now finds its way into various other projects at Cornell Tech.

2.3 Broader Perception of the Work

Since the original publication in 2018 [73, 74], the community has published

other papers and systems that use and improve the original publication.

In particular, a publication by Yavo-Ayalon et al. [215] used the concepts from

VR-OOM and the digital twin to create a visually augmented bus trip on the Roo-

sevelt Island bus. The system was used to see if “Situated and shared experiences

can motivate community members to plan shared action, promoting community

engagement.” [215]. See Figure 2.6.
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Figure 2.4: This figure shows two images from a simulation run from VR-OOM.
The picture on the left shows the view outside of the VR-OOM system onto the
Roosevelt Island digital twin. The picture on the right shows the same view of the
real world. The references have been generated from a video showing the system
working. See https://youtu.be/nb574wfbyos

Figure 2.5: Screenshot from the unity editor showing both a top-down
view showing the virtual Prius on the road and the view onto the road
from the participant’s point of view.

In some of the responses from the Autonomous Vehicle (AV) research commu-

nity, some implementations used 360°video [69], and others developed similar sys-

tems on other VR hardware [216]. Some of the cited work also stated exploring

HRI-related topics highlighting the applicability of these methods outside of the

AV context. Simulating robots and their interactions with people could be an easy

early discovery step for interaction design.
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Figure 2.6: Yayo-Ayalon et al.’s CXR system [215] built off of VR-OOM’s Roosevelt
Island digital twin.

By implementing open-world rules and object behaviors into the VR world, we

can let scenarios unfold naturalistically, extract behaviors from participants’ inter-

action with that virtual world, and use it as an essential source of information for

good interaction design.

2.4 Conclusion

The work on the VR-OOM system since its original publication [73, 74] was to

extend its operational capabilities. In this chapter, we discussed both the original

implementation’s drawbacks and the technical solutions we found to address these

challenges.
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The main contributions for VR-OOM are both technical and methodological.

First, VR-OOM makes evident how vita and difficult solving the stacked track-

ing problem is for a successful deployment. The addition of higher quality sensors

that included automatic heading correction lower sensor noise and allow for de-

ployment on real roads. However, this system still required adjustment controls

for the lane position to deploy VR-OOM successfully. It became clear that for a suc-

cessful deployment of such a system, and especially for deployment with mixed-

reality (XR) technology sensors working in an absolute reference frame would be

required, as the relative-tracking method was simply too noisy. Early and separate

experiments establishing the tracking solutions’ accuracies is a vital step in deploy-

ing such a VR-OOM system. Second, the methodological advancement stems from

early tests with the system. As the VR-OOM system was tested on real roads, it be-

came apparent a digital reference was needed to further build out the capabilities

of the system and design simulation scenarios. This was achieved by modeling a

digital twin of the testing environment. The digital twin of Roosevelt Island was

subsequently used in VR-OOM and XR-OOM studies. It allowed for the explo-

ration of how open-ended, naturalistic testing in real traffic can be combined with

VR-based simulators. This digital twinning concept that was rigorously evaluated

in this project but an essential element of the XR-OOM project discussed in the

next chapter (see Chapter 3).
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CHAPTER 3

DRIVING THROUGH REAL WORLD

Letting in more of the real world.

Figure 3.1: XR-OOM enables experimental studies where participants encounter
virtual objects (cones) while driving a real car.

For the second orbit of interaction, our goal is to let more real-world elements

influence and construct the simulated scenario to discover new and unforeseen

interactions. To this end, this chapter discusses the miXed Reality On-rOad siM-

ulator (XR-OOM)1, a simulator that extends VR-OOM by bringing in substantial

real-world elements (see Figure 3.1. This system opens the orbits of interaction to

include the real-world traffic environment in the studies scenarios. It introduces

realistic road topology, traffic scenarios, and other road users that are essential to

experience the ride in an autonomous vehicle (AV). Depending on how it is de-

ployed, XR-OOM can test a wide range of AV-focused and other scenarios.

This approach allows for the open-ended reconstruction of scenarios as they un-

fold in interaction with the natural world and includes accommodation for both

qualitative behavioral analysis and quantitative methods.

1This chapter reuses material from the original publications [75, 76]. Those works were co-
authored with Alexandra W.D. Bremers, Sam Lee, Fanjun Bu, Hiroshi Yasuda, and Wendy Ju, but I was
the lead author of those papers and the primary researcher on that body of work.
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3.1 XR-OOM Introduction

Automotive designers and human factors engineers use driving simulation en-

vironments to test the usability, safety, and driver performance impacts of inter-

faces and behaviors of the working systems with people. Driving simulators can

help recreate scenarios that may rarely occur in the world or would pose an un-

reasonable risk to study participants on the stage. By controlling experimental

procedures and scenarios, driving simulators can help recreate the same factors

and events within and between experimental conditions. In addition, driving sim-

ulators can act as a test bed for designers, allowing them to rapidly develop and

prototype for specific situations and environments and see how people might be-

have in those contexts.

It is common to use a mix of high and low-fidelity test environments throughout

the development of vehicular systems [57]. Current-day fixed-base simulators in

laboratories usually feature screen-based instrument panels and center consoles to

enable the rapid development of user interfaces. They are authored in graphical

simulation environments (such as Unity or Unreal) to make it easy to create con-

texts and scenarios. The level of fidelity of driving simulators has been found to

affect drivers, such as the presence of a realistic cabin leading to conservative driv-

ing styles and reduced motion sickness [22]. Test-track environments are more

challenging to develop interfaces and scenarios than simulators but feature more

realistic driving experiences such as vibration and physical motion. More natural-

istic tracks and the real road studies’ pass-through of the real-world environment

also help clarify the impact of external factors that designers might otherwise be

blindsided by.

This contributes a critical step towards safer, less expensive development envi-
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ronments for designing and testing future vehicle interfaces. Using a mixed-reality

(XR) headset in a real-world test vehicle, simulated events and interfaces can be

tried while drivers operate and experience being in an actual car. To reduce the

efforts of replicating the system and creating a realistic driving experience, part of

this thesis includes sharing the specification and validation of our system to make

the approach accessible to the broader automotive research community.

We seek to combine the strength of immersive simulation environments and

real-world testing environments through the use of XR driving simulation. In this

paper, we validate the safety and viability of this combination towards the goal of

using mixed reality to simulate driving scenarios with advanced driver assistant

systems. In Section 3.2, we discuss the design requirements to make in-vehicle XR

systems useful for driving simulation experiments in research and design. Next,

in Section 3.3, we describe the mixed reality system we built to operate driving

simulation experiments in vehicles.

Section 3.4.3 outlines safe and effective operational procedures and protocols

we used to validate the systems. We validated the mixed reality system for ba-

sic driver cockpit and low-speed driving tasks, comparing the use of the system

with non-headset and headset-only driving conditions to ensure that participants

behave and perform similarly using this system as they would otherwise.

3.2 Specific Requirements for Mixed Reality

3.2.1 Visual Resolution

The visual resolution influences the level of immersion of the participant and

their ability to acquire situational awareness. Technically, this is bound by the

41



screen’s resolution and the cameras that capture the environment.

One crucial functional requirement is the participant’s ability to see and compre-

hend visual information, particularly reading text. E.g., on navigation displays or

instrument panels in the vehicle. Text readability is challenging in virtual reality

because it requires very high display resolution [84, 116]. Prior research by Dingler

et al. indicates that the resolution needed for text readability in VR is a function of

the text size and render distance [45]. Curevo et al. found that “life-like” virtual

reality requires a resolution of 60 pixels per degree for 20/20 vision [35].

3.2.2 Field-of-View

Whereas visual resolution concerns the number of pixels per angular degree-of-

view, the field-of-view (FoV) requirement is a function of peripheral perceptions.

Van Erp and Padmos argue that FoV is critical to lateral control tasks, leading to

a more substantial impact on driving performance than visual resolution or la-

tency [204]. Driving performance was better in drivers with a 100° FoV than those

with a 50° FoV. Hu et al. note that the human eye has a 210°×150°(i.e., diagonal

200° [35]) FoV. Most commercial VR headsets only achieve a maximum 150° of

FoV2. The most critical zone, however, is the 60°around the center of the view [97].

Similar to the visual resolution to resolve details, the FoV requirement depends to

a certain extent on the experimental task the simulator supports. Any tests which

draw on the participant’s situational awareness or response to out-of-vehicle cues

or events would need a broad FoV. Tasks that take place in a slow traffic environ-

ment or center on in-vehicle interaction may use just a subset of a typical human

FoV.
2The Headset with the highest FoV that we could find is the Vision-8k-x with an FoV of

200° https://pimax.com/product/vision-8k-x/ Retrieved January 8th, 2022
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3.2.3 Pass-through Latency

Pass-through latency describes the combined latency of capturing the real world

with a camera and projecting it onto the screen with all processing steps in the

middle. Research on the combined latency effects on driving performance in sim-

ulated teleoperation of vehicles indicates a delay of 300 ms degrades driving per-

formance [160]. Related research looking at network-induced latency jitter shows

that jitter is a stronger predictor of negative remote driving performance, but also

found a performance threshold at the 350 ms range [133]. Studies on networked

multiplayer video games, particularly racing games, set the acceptable latency

range at 50 ms [28, 166]. With longer delays between participants’ control and

visual response, the perception and performance of game players start to degrade

noticeably.

However, mixed and Virtual Reality applications generally must meet stricter la-

tency requirements than in remote operation and multi-player gaming [35]. Mania

et al. identified the Just Noticeable Difference point to be at about 15 ms, with up to

20 ms being referenced as the maximum amount of delay before performance and

immersions start to be impacted [135]. Hu et al. indicate that the VR interaction

latency should be less than 20 ms to avoid motion sickness and discomfort [97].

Hence, we believe that systems that participants can operate in without feeling

motion sickness or discomfort should be reasonably good at supporting driving

operations and on-road coordination with other drivers.

3.3 System Design

Our system, XR-OOM, establishes the possibility of using XR for experimental

driving simulation research. (See Figure 3.2.) It is built using the Varjo XR-1 XR-
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headset and Unity simulation environment, which previous researchers demon-

strated could be usable for driving simulation in a moving vehicle [71]; XR-OOM

integrates and validates these into a usable driving simulation system.

This section motivates the setup based on prior immersive XR and driving sim-

ulation systems design. These requirements address the usability of such a system

and the participant’s safety, well-being, immersion, and comfort. This summary

of requirements should help replication attempts to evaluate other potential soft-

ware and hardware to be used in such systems as technology progresses and other

solutions become viable.

The current implementation is then but a snapshot of current technological lim-

its, and we anticipate that the viability of such a system will increase as technolo-

gies improve. The validation of this prototype can show what kind of research is

possible at the moment while highlighting what specific advances might be bene-

ficial to extend the simulator’s operational range.

3.3.1 Tracking and Localization

The system must solve a nested tracking problem for the simulator to render

objects correctly relative to the car and the outside world.3. We use the SmartTrack3

from ART [148] to track the participant’s head position and a ZED 2i Stereo Depth

Camera [188] mounted on the front bumper of the research vehicle for in-world

location (see Figure 3.2).

3For example, in [148] blog post, the Hololens team notes recently being able to perform sim-
ilar things for boat motion and mentions explicitly that such performance is not yet possible for
rendering virtual objects in moving systems like cars.
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In-car Localization

The head pose of the participant needs to be tracked relative to the vehicle cabin

to accurately render the in- and out-of-vehicle scenes from the driver’s perspective.

This makes it so that virtual objects within the car- for example, novel instrument

panel displays or in-world study questionnaires or instructions- can appear fixed

even if the participant moves their head.

In-world Localization

Localizing the car’s position and movement is critical to properly anchoring vir-

tual objects into the real-world scene outside the vehicle. Combining in-car local-

ization with vehicle localization gives us a continuous estimate of the headset’s

location and orientation within the vehicle and the world.

3.3.2 Additional Hardware and Software

Hardware Configuration

Details of this hardware implementation are detailed in Appendix A.2.1. System

diagrams, code, and simulator data for XR-OOM are on GitHub (Appendix A.1).

Earlier publications about this approach have not previously documented the de-

tails of the required system configuration. They are necessary for any researchers

using such a system to perform research experiments with [71].

Custom Software

Built on top of the Unity game engine, We developed software to render vir-

tual objects in the real world outside the car and to obscure those objects when

the physical car interior would have occluded the physical counterparts of these

virtual objects. This required synchronization between the location of the partici-
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Figure 3.2: Layout of the XR-OOM system components and validation equipment
in research vehicle, as well as the components used to validate the XR-OOM sys-
tem for this paper.

pant’s head in the car, the location of the vehicle in the space, and the location of

the virtual objects in the area.

Research Instrumentation

For experimental research purposes, the driving simulation system needs to be

able to capture the environment, the participant’s perspective, the behavioral re-

sponse of the participant, the vehicular response from the car, any aspects of the

controlled and uncontrolled environment which might influence the study out-

comes. We use the eye tracker of the XR-1, a 360° activity camera mounted under

the rear-view mirror, and an external activity camera stationed outside the vehicle

to capture the surroundings.

This kind of rich scenario and behavior capture must involve quantitative recon-

struction of the interaction. To this end, the initial version of the XR-OOM simula-

tor generated a significant amount of data; it produced approximately 133MB/s; a

10-minute experiment generates a file size in the 10s of gigabytes in its raw state.

In future work, data, such as the raw point-cloud stream, could be simplified by
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using real-time slam algorithms.

Besides recording the sensors in the vehicle, the attached cameras focus on cap-

turing the participant directly. The current continuous recording limit is about 40

minutes, mainly limited by power supply limits and memory available on the cam-

eras and computers. This could be extended to 2-3 hours with integrated power

supply setups in the vehicle and a different storage setup.

Capture Participant Response

There are many ways in which this simulator supports capturing the partici-

pant’s behavior.

Video By recording the participant’s perspective inside the car, the view outside

the car, and the surrounding environment, we gained valuable insights into how

interactions unfolded and how participants responded to the driving and cockpit

tasks. This comprehensive approach enabled us to reconstruct and analyze the

complex dynamics of the traffic scenario, providing a deeper understanding of

human-automation interactions in the context of autonomous vehicles.

Gaze Tracking Most research-focused VR/XR headsets include an Eye tracker

that allows you to record what the participant is looking at. This can help re-

searchers reconstruct what the participant focused on, what they spent time on,

and what caught their attention.

Open-ended questionnaires Open-ended questionnaires were employed as a

valuable tool in our research to capture the participants’ subjective experience. By

allowing participants to express their thoughts, feelings, and perceptions freely,

we gained insights into their overall experience and well-being during the study.

These questionnaires provided a platform for participants to provide detailed and
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nuanced feedback, helping us understand their perspectives, preferences, and any

challenges they encountered. The self-reported data obtained through open-ended

questionnaires enriched our understanding of the participant’s experience and

complemented the objective measures captured through other research methods.

We also used the think-aloud method to capture the participant’s experience and

reasoning directly.

Participant’s input Participant behavior was constructed from the video and sys-

tem recordings. These were carefully monitored and abstracted into measures such

as steering wheel movements and mistakes. These measures provided valuable in-

sights into how participants interacted with the augmented environment and the

autonomous systems. By analyzing steering wheel inputs, we could assess partic-

ipants’ control actions and asses their certainty in executing the task by counting

steering wheel reversals. Similarly, recording participant mistakes provided infor-

mation on performance errors, allowing us to identify areas of improvement and

potential challenges when using the XR-OOM system.

3.3.3 Position and Trajectory Measurement

To measure the different patterns between the conditions, we need a system that

calculates the trajectory of the vehicle. We used Google’s Cartographer [92]to ex-

tend a separate set of tracking sensors with a localization system. The trajectory

from the vehicle can be extracted to generate performance measures like, e.g., cen-

ter line deviation. An example of this output can be seen in Figure 3.3. For more

details, please see Section 3.4.2.
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Figure 3.3: Depiction of the path as calculated by the ZED 2i (blue) and the SLAM
algorithm (red) overlaid on the depth map from the Ouster LIDAR.

3.4 System Evaluation and Study

We perform a system validation test to evaluate our XR-OOM system to bench-

mark the external validity of simulated activity; this validation measures how sim-

ilarly participants respond to real-world vs. virtual objects while using XR-OOM.

The following system validation focused on operational issues in running mixed

reality in-vehicle driving simulations. In addition, we evaluate the safety and com-

fort when using the system, its effects on driving performance, and its usefulness

in understanding and recording driver interactions.

Overall, this validation aims to confirm that the XR-OOM platform can be used

to run user studies with external validity safely. Initial test drives with the headset

worn by a researcher in the passenger seat were used to develop in which a pas-

senger on the vehicle was wearing an XR headset to evaluate the performance and

comfort levels associated with wearing the headset.
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3.4.1 Pilot Test

In pre-validation pilot testing, we demonstrated that the system’s graphic ren-

dering works on an experiential level. The registration between virtual objects and

the physically projected world was convincing, such that it matched the physical

sensations.

The pilot test involved four different runs with increasing technical complexity.

The first pilot had the participant in the passenger seat and reported their expe-

rience. The following three pilots then implemented more and more of the final

study design, gradually increasing complexity—the pilot participants were mem-

bers of the same University lab that was not actively working on this project.

The main takeaways from the pilot tests were that 1) it was possible to acquire

situational awareness while using the XR-headset, 2) it is possible to operate the

vehicle in a low-speed environment safely while using the XR-headset, 3) back-

ward driving required a more complex implementation then anticipated. Navigat-

ing backward without properly working mirrors that include virtual objects was

not representative of regular driving. We also learned more minor details around

the study execution and how to instruct participants best using the setup.

Unlike this pilot test, the subsequent validation test aimed to ensure that the

system works for a broader audience of participants and verify that the approach

is practical for use in driving simulation studies.

3.4.2 Sensor and Localization Validation

To validate the XR-OOM system’s ability to track and localize the research vehi-

cle as it moves through the real-world study environment, we set up a secondary

50



trajectory tracking system to benchmark XR-OOM’s tracking and localization ca-

pabilities. This system also enabled us to track vehicle motion through all study

conditions, including the control condition where the XR-OOM system was not

used.

The trajectory was computed using the Simultaneous Localization and Map-

ping (SLAM) solution from Koide et al. [118] running in Robot Operating System

(ROS) [170]. Below is a list of sensors that were used. For the moment, the LIDAR

was used to generate the trajectory and the map while speed and IMU messages

were recorded.

LIDAR A OS1-64 2nd Generation LIDAR sensor from Ouster was mounted at the

front of the vehicle, running at 1024 beams with 20 HZ. This sensor was used to

build a depth map of the environment around the research vehicle.

IMU An Xsense MTI-300 IMU was mounted in the center of the vehicle and con-

nected over USB to the ROS core computer; this enabled tracking of the vehicle’s

orientation in space.

Odometry Odometry data from our research vehicle, a 2015 Toyota PriusV, was

obtained from the vehicle’s CAN Bus using a Korlan USB2CAN module. This was

primarily used to track the forward velocity of the vehicle; data was sent over USB

to the ROS core computer.

Networking The validation stack used the networking infrastructure of the XR-

OOM system to connect the LIDAR and the SmartTrack3 to the ROS core Com-

puter.

Power We estimate the power consumed by the validation stack to be 250 W, sup-

plied by the same power infrastructure that powered the main XR-OOM system.
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3.4.3 Validating XR-OOM as a Testing Platform

While driving simulators have been widely used for assessing fitness to drive,

there is no systematic way to compare their validity and fidelity [23]. Since XR

simulators using video pass-through are relatively new concepts, no clear and ob-

jective evaluation criteria exist for the impact on driving performance.

To ensure the system’s capability to capture driving performance and partici-

pant response and to understand the impact of the system on both these factors,

we conducted a validation test to ensure that the system meets the criteria for be-

ing used to conduct user studies typical of those that human-machine interaction

designers and researchers run. The criteria that we investigate are the following:

1. Does using the video pass-through headset allow drivers to conduct cockpit

tasks?

2. Does the video pass-through headset allow participants to maintain suffi-

cient driving performance and experience?

3. Are virtual objects simulated believably enough to provide valid predictions

of how drivers will respond to physical objects in driving?

4. Does the system support data recording to the extent required to run interac-

tion user studies?

Moreover, all of these functionality checks needed to occur while the vehicle was

being safely operated, so this was also a validation of the system’s safety for this

use case.

For this validation, we had participants perform cockpit tasks and driving tasks

with and without the XR headset. Our test version of the XR-OOM platform was
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implemented in a Toyota Prius V, used for the validation tests in a restricted testing

area in a parking lot, with permission from the municipal lot owners.

3.4.4 Tasks and Course Design

We developed several basic study designs that an in-vehicle mixed-reality driv-

ing simulator could test. The participant’s performance of these tasks helped us

understand the system’s performance envelope, allowing for studies.

3.5 Study

In the following section, WeI will provide an overview of the study, including

participant recruitment, methodology, and experimental conditions.

3.5.1 Participants

As our test was focused on system validation rather than experimental inquiry,

the validation sample of participants was drawn from our university through con-

venience sampling. One of the participants’ recordings was incomplete and hence

dropped from the analysis. The recording of one of the participants is incomplete.

Therefore we removed the participant from subsequent analysis. The resulting

sample of 10 participants covered the following estimated demographic character-

istics: age (20-30), gender (5 male, 5 female, 0 non-binary), and nationality (India,

United States). Two participants reported only having driven right-hand drive ve-

hicles before this study.
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3.5.2 Method

Experimental Conditions

Our experiment had three conditions:

Condition A. No headset Participants would not wear a headset when conducting

tasks and act as a type of control against which the other conditions can be com-

pared against.

Condition B. Headset with video pass-through only Participants would wear a headset

that would show a pass-through video of the environment but which included no

virtual objects. This condition isolates the impact of wearing and using the XR-1.

Condition C. Headset with video pass-through and virtual objects Participants would

wear a headset showing the same view as condition B but with virtual objects

overlaid. This condition evaluates the participant’s ability to see and react to vir-

tual objects.

This was a within-subject study design; all the participants experienced all con-

ditions. We used a Latin Square ordering method to counterbalance the order of

the headset conditions for each participant.

Cockpit Tasks

Part of the experiment was to perform several non-driving tasks in the cockpit.

These cockpit tasks were designed to test the participant’s ability to operate the

cockpit interfaces of the car. The cockpit tasks were done two times, once without

and once with the headset. They were added to the beginning of the no-headset

condition A and the first condition with a headset (either condition B or C).

We focus our cockpit task validation on stationary tasks that fit into what Bubb

et al. call ”secondary tasks,” [21] which involve communicating with other traf-
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fic participants or reacting to the environment changes. Based on the litera-

ture [67, 112, 143, 199], we developed the following list of stationary validation

tasks: Turn on vehicle, Adjust seat, Fasten seat belt, Adjust mirrors, Use turn

signals, Control headlights, Control wipers, Control hazard lights, Using the

parking brake, Verbally explain which dashboard lights are visible. The version

presented to the participant can be found in Appendix A.2.4.

This is an important validation step for a simulator as there are many cases in

which the driver needs to read and react to information from the dashboard or

road. A simulator that severely limits the participant’s ability to resolve the world

around them would be significantly limited.

In this study, the cockpit task was also a safety check before the participant

would drive the vehicle. We could externally verify that the participant could

operate the vehicle. Both in their ability to operate the vehicle and their ability to

see the world through the XR headset.

Driving Tasks

Following the stationary cockpit tasks, we evaluate the mixed-reality in-vehicle

driving tasks around the category of Bubb et al.’s ”primary tasks” [21] are to keep

the vehicle in a planned path and include navigation, handling the road situation

in front, and low-level lateral and longitudinal control.

Using a video pass-through headset can introduce driving impairments similar

to those of people of advanced age who experience degradation of driving abili-

ties [9]. Their driving impairments could affect the participant in a multitude of

ways. These could be cognitive impairments impacting, e.g., their visuospatial

ability, speed, and reaction time; vision impairments such as visual acuity, visual

55



9 10

11 12

Figure 3.4: The cockpit tasks the participants drove. Each step was printed and
sealed on a letter-sized sheet of paper. The dots on the page represent the cones
placed in the parking lot.

fields, color vision, depth perception, contrast sensitivity, and glare; and physical

impairments such as limited neck rotation and trunk rotation. Our validation ac-

tivities aim to ensure that the impairment due to the video headset does not unduly

affect primary driving capability.
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Drawing upon driving task literature [113, 146, 171], as well as resources for

people learning to drive in the US [31], we defined four driving tasks: Left Turns,

Slalom, Right Turns, Stop Line (see Figure 3.4). The tasks took place in a parking

lot marked using traffic cones. In the no-headset (A) and a headset with video

pass-through condition (B), the cones were physical cones placed on the road at

8-meter intervals according to a pre-defined pattern. In the headset with virtual

objects condition (C), the physical cones were removed from the lot and visually

replaced with virtual cones displayed within the XR headset, set out in the same

pattern as the physical cones.

These first evaluation steps evaluate the participant’s capability to safely operate

the vehicle and perform basic driving and cockpit tasks, forming a driving simu-

lator’s baseline requirements.

LT: Left turns
S : Slalom
RT: Right turns
SL: Stop line

Procedure

Each participant’s engagement took about an hour in total. The participant was

first asked to give informed consent for the study and then was transported from

campus to the testing site. The participant was told they could stop the experiment

anytime for any reason. They were also informed that they should let us know if

they feel motion sick or unwell in any other way. We asked them to drive slowly

and that, in the unlikely event of a failure of the mixed reality system, they should

stop the vehicle by stepping on the brake. The participants performed all the study

tasks as ordered by the study’s Latin Square design. After the driving tasks, the

participants answered simulator sickness and subjective experience questions. Af-

ter the experiment, the experimenters would transport the participant back to cam-
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pus.

Measures

We used a variety of observed, objective, and self-assessment measures to un-

derstand the XR-OOM system’s impact on people’s driving.

Observed measures. Video of participant performance in the cockpit and driving

tasks were observed and rated by researchers post-facto.

Objective measures. The driving performance was measured using post-facto

analysis by computing the Frećhet distance between a normalized driven path and

a normalized “ideal” synthetic ground-truth path. This comparison of the driving

trajectories, detailed in Appendix A.2.5, was visually confirmed against the 360°-

video recordings of participants, particularly in cases where the participants were

clearly far off the ideal path.

Self-reported Assessment We performed semi-structured interviews with partici-

pants to record their own impression of their ability to drive with the XR-OOM

system. We asked people to describe their experience driving with the XR system

and note differences between with and without it.

3.5.3 Risk Assessment & Mitigation

Real-world experiments contain the risk of physical injury to the participant and

other people and the risk of physical damage to the vehicle and the physical world.

Our broader goal with the XR-OOM system is to run on real roads with regular

traffic. Still, for this validation study, we exercised an abundance of caution to

minimize possible sources of risk. A list of risk factors and our mitigation methods

is given below:
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Driver Variability

We recruited drivers with driver’s licenses and were legally allowed to operate

vehicles in the United States. The pre-study protocol involves simple instructions

for gaining consent and setting up driving activity. Participants who had difficul-

ties with these steps would not have been asked to continue with the study. We

could have further restricted participation to people with local driving experience

and experience with automatic transmission vehicles; these restrictions trade-off

against understanding issues that a broader diversity of participants would reveal,

so we did not apply them to this study.

Unintended Acceleration/Collision with Obstacles

We designed the activities to occur at low speeds and over short distances. We

located the tasks so that strong braking or accidental acceleration would unlikely

result in a collision with any surrounding structures. The participants were asked

to put on seatbelts early in the study, and those instructions were repeated at the

start of every condition. We tested both physical and CAN-bus-based systems

to limit the vehicle’s speed. Subsequently, We found they were unnecessary and

could introduce other safety issues because they could cause the car to behave in

ways that participants would not expect.

Collision/Interference with Other Vehicles and Pedestrians

We set our study in a restricted lot where we would not encounter wayward

traffic. We had a permit for the exclusive use of the lot during our studies. The

on-site researchers also directed people and vehicles driving through the site so

they did not come close to our test area. In advance, drivers were told that people

drive through the site to just brake and wait until the other vehicles had passed

through.
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Researcher Safety

The study was initially designed to occur with a researcher in the backseat of

the vehicle the participant was driving. To reduce the risk of viral transmission,

we subsequently located the researcher outside the vehicle and provided partici-

pants with instructions and guidance over a mobile phone. Researchers ensured

participants were entirely stopped and asked them to put the car in park before ap-

proaching the vehicle and opening any doors. Researchers wore reflective traffic

safety vests to increase their visibility and stood at the same location throughout

the study.

Loss of Vision

Because the system uses a video pass-through, it is possible for hard failures in

the XR system to cut driver visibility completely. In any on-road experiment, it is

also possible that external obstacles and events can cause loss of vision. We told

participants that in the unlikely case of complete loss of the ability to see the ve-

hicle and driving site, they should immediately step on the brakes for a hard stop

and await additional instructions. The loss of vision could come from Hardware

Failure like a loss of power or a cable disconnect. We ensure the system’s safety

through repeated testing and piloting, as well as using warning systems for the

battery power level. Software Failure was another possibility that could lead to a

loss of vision. This could be triggered by Unity failing, the graphic card drivers,

or even the entire system. This was mainly mitigated by ensuring we frequently

restarted the system and only ran the required software.

Loss of Tracking

Each of the two tracking systems SMARTTRACK3 and ZED 2i could fail to

break or interrupt the continuous tracking of the motion of the headset through the
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world. The main problem was dealing with differing lighting conditions. Piloting

the system in different/acceptable weather conditions helped us ensure that loss

of tracking was not a frequent occurrence and that the system could automatically

recover from it.

Driver Discomfort

Discomfort is a factor in many driving simulation studies, so much so that there

are standardized questionnaires to assess the degree of “simulator sickness” par-

ticipants experience [111]. Counter-intuitively, both Paredes et al. and Goedicke

et al. found that, with a high-resolution virtual reality headset in a vehicle with

well-correlated physical and virtual motion, the combination of the virtual real-

ity environment and the physical environment causes less motion sickness than

virtual reality environments or in-vehicle autonomous driving experiments them-

selves [74, 167]. This is probably because the correlation of virtual and physical

motion induces fewer problems than the juxtaposition of moving environments

without corresponding visual movement (as commonly occurs in VR environ-

ments) or visually moving environments without corresponding physical motion

(as occurs in driving simulation) [100].

While we would like not to have any discomfort, we wish to understand

whether any experienced discomfort is tolerable or impairing. To minimize the

likelihood of nausea and motion sickness, we had the air conditioning turned on

in the car with the fan speed set to high. We also let the participants know they

could stop the study at any time if they felt uncomfortable. With mixed reality in a

moving car, both motion sickness and simulator sickness need to be avoided [187].

Participant discomfort caused by simulation or motion sickness could further be

mitigated by good ventilation and temperature control, which is a feature that can
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be expected in most on-road vehicles [187].

We did not include tasks that would involve reversing; the entire experiment

takes place in the forward-driving direction. This decision was based on two con-

siderations: (1) rear-driving tasks are already more challenging in normal driving

conditions and thus include a higher risk, and (2) our system scope currently does

not support a whole rear driving experience due to virtual objects not appearing

in mirrors inside the vehicle.

3.6 Results

3.6.1 Task Measures

In the following sections, we discuss how participants can control the system to

validate the XR-OOM system’s usability as a simulation platform.

Cockpit Tasks

With Headset Without Headset
Completed Failed Completed Failed

Turn on vehicle* 3 2 6 0
Adjust seat* 5 0 5 0

Fasten seat belt* 3 0 6 0
Adjust mirrors* 9 0 7 0
Use turn signal 10 0 8 1

Control headlights 10 0 8 0
Control wipers 9 1 9 0

Control hazard lights 10 0 9 0
Use the parking brake 7 3 7 2

Table 3.1: This table shows the performance for different cockpit tasks expressed by
counts of completed and failed tasks across participants. (* In some cases, a task
was skipped because it was already completed, e.g., the seat was already in the
correct position. This leads to the total count amounting to less than the number
of participants (10).) The Explain dashboard lights task results are excluded here
because the counts do not indicate when participants erred.
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Cockpit task performance was evaluated as either success or failure. The data

was extracted from the 360°camera in the same manner as for the driving tasks (the

entire table is in the Appendix 3.1. Most participants could successfully conduct

the tasks with minor retries in the headset condition. Some participants could not

turn on the vehicle (N=2), used the wrong stalk for controlling the wipers (N=1), or

looked for a button instead of operating the foot-controlled parking brake (N=3) in

the headset condition. The cause of these errors was mainly related to unfamiliar-

ity with the (type of) vehicle or the instructions, such as not knowing to press the

brake when starting the vehicle or not knowing that the parking brake was foot-

operated. The failed tasks did not rely heavily on visual information. In five tasks,

some participants skipped the task due to the task already being completed (e.g.,

the seatbelt was fastened) - we did not include their counts in the total number of

failed or completed tasks.

One notable exception was the last task in which the participant had to explain

all the icons they could see on the dashboard. The vehicle speed (the largest num-

ber) was quickly visible; however, smaller icons (e.g., tire pressure warning) could

not be resolved. While some participants could see more than others, they could

only see and report some icons. However, most participants were able to read the

speed indicator, which is the largest number on the screen.

Many participants also completed the parking brake task wrong and pressed the

[P] button instead of the foot operating the parking brake, which was the intent for

this task. Arguably, however, this was due to the ambiguity in the instructions and

had nothing to do with the headset affecting the participant to do the task. This is

based on the fact that failure to complete this task was similar across all conditions.

One notable difference during the study was that most participants needed to
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A B C
LT S RT SL LT S RT SL LT S RT SL

Correct
path* 8/8 6/8 9/9 9/9 7/8 5/9 8/9 9/9 2/9 3/7 4/9 5/9

Halted 1/9 5/9 3/9 1/9 1/9 6/9 2/9 2/9 6/9 4/9 3/9 1/9
Task time

M (s) 41.9 70.2 42.2 17.3 43.7 57 46.4 15 50.9 49.4 54.7 26.7

Task time
S D (s) 17.7 41.6 16 6.8 27.3 33.5 12.9 6.3 14.8 21.7 11.9 24.2

Table 3.2: Summary of participants’ behaviors. For each task and condition, we
report the total number who followed the correct path, halted, and mean task time
and its standard deviation for task and condition. The abbreviation LT S RT SL
refer to the four different driving tasks. See Figure 3.4 for more details.
*In some cases, participant results were excluded as they were caused by a system failure
(e.g., tracking error).

raise and hold the instruction papers in front of the headset, contrary to reading

directly from their lap.

Driving Tasks

All participants could read the instruction diagrams and follow the routes. For

the remaining operational driving tasks, their performance was evaluated using

the metrics shown in Table 3.2. A researcher annotated the video recordings by

observing videos of the participant-facing camera, an external camera, and the

headset camera. The annotation criteria of each metric were as described below.

A human annotator extracted performance data about the participants driving by

observing videos of the participant-facing camera, an external camera, and the

headset camera. From these annotations, a set of tasks appeared to be particularly

difficult. These are described below. The annotation criteria of each metric were

also described below.

The slalom task was the most difficult for participants to accomplish in the driv-

ing tasks. Most participants needed to back up to do it correctly because the first
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turn into the slalom was very tight. This task was unforgiving; if participants

missed the first turn, they would have to retrace their position to be correctly

positioned for the subsequent task. The short height of the traffic cones made it

challenging to see the cones when drivers got closer to them; participants had to

remember the locations of the cones and guess where the vehicle’s bumpers were

in space to avoid hitting the cones. This task was particularly challenging in con-

dition C because the lack of ability to see the virtual cones in the rear-view mirror

made it challenging to locate the relative location of those cones to the car. Further-

more, this task was challenging because the cones very quickly vanish below the

vehicle, and you need to have a good guess of where the vehicle starts and ends to

avoid hitting the cones.

For the Left Turns task, finding the correct point to turn right was also hard for

some participants. Several participants turned too early and then had a very long

left turn.

Participants found the Stop Line task to be the easiest. However, the partici-

pant’s interpretation of where to stop for a stop sign line varied significantly.

3.6.2 Driving Trajectory

Each participant’s drive was recorded with ROS. However, two trajectory

recordings were incomplete or corrupted after the experiment, so the data for 8

participants could be compared. From 8 recorded trajectories, we compute the

Fréchet distances as a proxy for driving performance to compare the conditions

against an “optimal” path. Please see Appendix A.2.5 how these values were com-

puted. The graph of the performance differences from these analyses (see Fig-

ure 3.5) The average Fréchet distance increase from condition A to C, though not
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Figure 3.5: This box plot shows for each condition the Fréchet distance with
the outliers showing the participants and conditions where the participants miss
judged their path and followed the wrong route.

significantly different with 1 to 2 outliers for each condition.

3.6.3 Self-reported Measures

We also recorded each participant’s post-experiment interview results, including

a self-assessment rating for each condition.

At the end of the experiment, participants were asked eight questions about their

general experience and well-being. Three out of 10 participants mentioned they

drove better with the headset. Three participants reported mild motion sickness,

one of which was more severe. Three people reported a light headache, and 4

participants reported some eye strain. Although participants were asked to contact

us if these symptoms failed to subside or if they got worse later in the day, no

participant contacted us about these issues afterward.

66



3.7 Discussion

As a driving simulation platform, XR-OOM must support a wide range of exper-

imental studies. With the results from this implementation, we can now validate

the system and contextualize it with other types of simulator studies and possible

scenarios this kind of system should ideally support.

3.7.1 System Validation

We return to the questions first raised in Section 3.4.3 for system validation. We

should point out at the outset of this discussion that since we are trying to validate

the XR HMD setup for driving studies, the desired result is for there to be as little

difference as possible between the performance between conditions. If there is a

difference, we would prefer that difference to be small and the performance to be

best in the no-headset condition. This would suggest that tasks people can perform

well enough in the XR setting would predict even better performance from the

simulation. (This is different from what would be desirable in an experimental

study, where low or no difference between conditions would indicate a null result.)

Does using the video pass-through headset impact the participants’ ability and

experience to operate cockpit tasks?

Besides the cockpit task, we intentionally chose to have the instructions printed

on paper for the participant to read to ensure a correctly working HMD and eval-

uate the participant’s ability to read and follow the instructions. All participants

were capable of reading the cockpit tasks from the instruction sheet. So most of the

cockpit tasks were also unaffected by the use of a headset (see Figure 3.4). These

results point to the system’s exciting capability that allows for testing of brought-in

devices like phones or tablets during the driving experience. These devices might
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be the participants’ real devices or virtual applications that do not yet exist.

The most problematic task was distinguishing icons on the dashboard. Cameras

resolution, dynamic range, and refresh rate aliasing made this task particularly

difficult. While all participants could see some information, most only reported the

vehicle speed, the largest number in the screen center. Additionally, it is essential

to point out that seeing the media center and AC controls caused fewer difficulties;

however, these were not explicitly part of our study and need further assessment

in future research.

Certain display/camera interference notwithstanding, this method allows for

testing new displays and controls. With the present technology, it is possible to

change any display surface. These should be done in a way that has face valid-

ity (simulated interfaces should strongly resemble actual interfaces) and elicit rel-

atively realistic behavioral responses. This also includes heads-up displays and

other new display technologies that go beyond current instrument clusters or cen-

ter console media players.

Additional complications occurred with the tasks that required body movement

in the vehicle, like setting up a chair and putting on the seat belt. Wearing a headset

gave less space for the participant to move around, and the limited field of view

from the headset meant that many steps in these tasks needed to be done via touch

(e.g., feeling where the seat belt is).

The cockpit task did not pose any significant hurdle to running the study. For

such tasks, further optimizations like directly controlling the XR camera’s expo-

sure could help make display items more visible. To address this issue, future

work could look at how a subroutine could adjust the headset’s exposure based on
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its pitch angle.

Does using the video pass-through headset impact the participants’ driving per-

formance and experience?

Based on the experiments, the difference between driving with a XR headset vs.

without one is minor. Variables like average speed and task time are similar, and

the vehicle paths appear similar when visually compared.

The main limitation identified during these trial runs was that the headset’s

weight and bulkiness caused participant discomfort. This, in combination with

the limited space of the vehicle cabin, detracted from the participant experience.

These findings pertain specifically to low-speed driving tasks; we expect that

driver performance and the driver’s experience would degrade in higher-speed

conditions. However, based on the experiences we have had to date, it should be

possible to safely perform driving tasks up to 30 mph if the vehicle is in an area

without other cars or pedestrians.

Even with the mentioned limitations, these findings enable this approach to test

drivers‘ responses to different visual impairments to the driving environment (e.g.,

cataracts, heavy snow, or rain) and to design compensatory measures for such

drivers. By altering the visual feed to the XR headset, we can simulate the impact

of visual impairments as limited field-of-view have on driving.

Are virtual objects simulated believably enough to provide valid predictions of

how drivers will respond to physical objects in driving?

One key issue for this validity study is whether participants treat the virtual ob-

jects as real objects enough so that their interactions with the virtual object indicate

how they would interact with future physical objects. The realism of the simula-

69



tion could be related to aspects such as depth perception in virtual displays, which

has been studied in various automotive AR applications such as [20].

From the study footage, we could see that participants drove more cautiously

through the tasks with the virtual cones, taking a little more time and making a

few more mistakes. In general, completing the tasks with condition C was more

difficult than any of the other conditions. This is also reflected in the participants’

self-reported experiences.

Analysis of the three conditions’ driving paths (Figure 3.5) shows that people

tended to drive similar paths in all three conditions. This also indicates that the

participants did not ignore or in any other way treat the virtual cones any differ-

ently than the physical cones. After watching the headset video recordings and ex-

amining the generated path, the participants seem to take wider turns around the

virtual cones, comparatively showing more cautiousness when interacting with

virtual objects.

This suggests that participants took the virtual objects seriously and tried not to

hit the objects even though they were not physically present.

For future studies, the traffic cones could be replaced by pedestrians, bicyclists,

road incursions, road signs to be followed, etc. Additional XR elements could then

be introduced into the XR environment to accentuate the external phenomena (e.g.,

highlighting pedestrians it senses and recognizes) or feature simulated objects or

actors to assess the participant’s response to the highlights or simulated object.

The capability to meaningfully place and track objects in the environment also

extends the capability of the simulator towards testing extraordinary traffic con-

ditions like, e.g., an icy patch of road that affects user experience and vehicle re-

70



sponse. While the current system cannot affect the control behavior of the car, it

can visually augment the participant view to create a more holistic experience in

ways that a controlled laboratory or pure VR studies would not be able to.

Does the system capture information about participant behavior well enough

for analysis in user studies?

In the analysis above, we highlighted some of the available data streams we cap-

tured and demonstrated how they could be used to gain insight into a participant’s

behavior and performance.

The XR-OOM system offers multiple perspectives for qualitative coding that re-

searchers can use to observe a participant post-facto. Video streams provide a clear

view of the vehicle, the participant, and the road in front of the vehicle and directly

show the participant’s perspective and track their gaze. These streams can also be

automatically analyzed, as shown in Figure 6.2. These different perspectives allow

the researcher to reconstruct the complete picture of what the participant saw and

how they reacted in a given situation.

Capturing detailed participants’ responses is key when trying to understand

their reaction to a given social environment; these have been shown to have an

enormous impact on both good and bad drivers. The combination of XR-OOM

capabilities to collect detailed data and render virtual objects allows for simulated

social actors in the car. By adding sound sources and other virtual characters into

the vehicle, we could, e.g., evaluate how social distractions affect a driver and

how technology could help mitigate such effects. Conversely, social agents could

prevent drivers from becoming bored or angry in the vehicle or help point out

important external cues to improve situation awareness.
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Further, qualitative data can be gathered through self-reported questionnaires

and interviews. This study used a regular phone connection to allow participants

to think aloud as they worked through the different tasks and answered question-

naires at the end of each condition. This is made possible by the headset’s high

resolution as it resolves the phone screen enough that the participant can use their

phone.

The quantitative data allows a more formative analysis of the participants’ driv-

ing. Sensors like the used LIDAR or IMU will enable us to capture the detailed

movements of the research vehicle and compute an accurate path that can high-

light the driving behavior.

The combination of participant behavior and vehicle motion are vital features

to test advances in vehicle automation. XR-OOM could support the study and

development of different paths to driving automation, such as teleoperation [159]

or supervisory control [98]. For such studies, relative behavioral validity in how

people notice and respond to control transition events is desirable [94, 158].

Other Discovered Issues

Beyond answering the questions we posed about the viability of XR-OOM as

a driving simulation environment, our research also helped us discover technical

issues that should be addressed, particularly regarding the cameras used on the

XR headset.

Because XR equipment is often designed to operate indoors and under con-

trolled lighting conditions, the cameras on these systems are not well-optimized

to handle the high-dynamic range of light intensity in an outdoor setting. This can

especially be problematic inside the research vehicle, as participants might switch
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between looking at the outside world and a shaded dashboard. This use also ex-

tends to visual tracking systems, as some depend on their own modulated IR light

sources. The sun can quickly “down out” these sources making it impossible for

the camera to pick up the modulation and tracking markers.

Another issue we encountered was the interaction between the refresh rates of

the camera and the instrument panels the participant was trying to read from. If

these have similar refresh rates, aliasing can occur; this makes the panel displays

appear to fade in and out and thus become harder to read.

3.7.2 Safety Assessment and Risk Mitigation

For safety assessment and risk mitigation, we return to the previously identified

risks in Section 3.5.3. We also discuss the necessity and efficacy of the measures we

took for risk reduction in this validation work.

Driver Variability

The participants had different comfort levels and capabilities in accomplishing

the cockpit and driving tasks, even for the control condition tasks. Some partic-

ipants were flustered and inadvertently skipped tasks. Another source of vari-

ability came from the participants’ experience driving a vehicle like the research

vehicle, e.g., some participants had only driven manual transmission vehicles and

therefore took longer to find and use the parking brake. The participants also had

differing responses to the XR headset: their differences in height and neck strength

affected their response to the system. While we were prepared to reject partici-

pants who seemed like they might not perform the study tasks safely, we did not

find that we needed to stop the study early for any of the participants in this study.
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Unintended Acceleration/Collision with Obstacles

The task design successfully limited the participant’s speed as the recorded max-

imum was only 4.3 m/s. At no point did any safety systems like speed limiters,

verbal collision warnings, or safety belts engage.

Collision/interference with Other Vehicles and Pedestrians

In some cases, other vehicles or pedestrians drove through the lot. At no point

did it seem like the participants were likely to collide with any other vehicles

or pedestrians; additionally, the participant either noticed the other vehicles or

passers-by themselves or was notified by the researcher over the audio channel to

pause study driving activity. For the duration of anyone passing, the participant

halted the task.

Researcher Safety

The researchers had a clear spot to the side of the experiment area. They

used clear communication to confirm parking with the participants when they ap-

proached the vehicle between conditions.

Loss of Vision

Because the system uses a video pass-through, it is possible for hard failures in

the XR system to cut driver visibility completely. These risk factors are discussed

in Section 3.5.3. While we did not have any complete HMD blackouts, we did have

an instance where the HMD popped dialog boxes on the display, which blocked

the areas of the participant’s visual field. In that instance, the driver could stop

and follow audio instructions to resolve the issue. In the future, finding ways

to turn off such messages is important unless the vehicle is completely stopped.

However, the possibility of this type of failure leads us to recommend that driving
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with HMD should be restricted to low-speed (≤ 15mph) driving scenarios in real-

world environments and mid-range speeds (≤ 30mph) in closed track or black-lake

environments. Higher speed driving should employ XR systems with optical pass-

through, such as the Microsoft Hololens [148].

Loss of Tracking

Situations where the headset’s location within the car was not correctly mapped,

occurred several times during the study. We noticed that when some participants

turned their heads to the left, towards the driver’s seat window, the in-car localiza-

tion lost track of the headset. This was not a significant problem as tracking was

resumed as soon as the participant turned their head back.

The in-world tracking was also unstable for some participants; in particular,

variability in external lighting caused by cloud cover caused the tracking to be

less reliable. The participants were always able to continue the experiment. The

tracking loss resulted in small jumps (a few centimeters and degrees) in the visual

field; no participants that experienced this tracking jitter had difficulty adjusting

their trajectory.

On the whole, and comparing the technical issues using this simulator to previ-

ous in-lab and in-vehicle driving simulation environments used by the study re-

searchers, we felt this system was robust enough to perform driving experiments

with.

Driver Discomfort

While we anticipated and hoped to mitigate discomfort stemming from the sim-

ulator or motion sickness, we found that the major source of driver discomfort

in the study came from the headset, which many participants found to be heavy.
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Prior research has indicated that heavy or unbalanced headsets can create discom-

fort in participants over time [114, 213]. We hope future headsets are lighter and

less likely to cause this issue.

Across the study conditions, condition C was rated the least comfortable but was

still above the mid-point for the Likert (2.6 compared to 2.5 out of 5). We also asked

participants to email us if they felt nausea later in the day following the study, and

none of the participants sent an email indicating post-experiment discomfort.

3.7.3 Limitations

COVID-19 Protocol Measures

While this system was developed before the COVID-19 pandemic, it was evalu-

ated during the period following strict social distancing measures. Our study pro-

tocol included specific transmission prevention measures not detailed above: Par-

ticipants and researchers must wear face masks throughout the study. The headset

and research vehicle were extensively sanitized before and after each participant

run. The research vehicle window was left open to enable extra ventilation. Par-

ticipant recruitment was limited to the on-campus population who were part of an

extensive university testing program.

We do not indicate that these preventative measures impacted the study results,

and all of these measures should have affected all of our study conditions equally.

Convenience Sampling

Due to the study above restrictions, our study participant pool was limited to

part of an on-campus population. Ideally, this work would be replicated with a

broader demographic pool to see if age or other factors affect the system function.
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Reverse Driving Tasks

Participants in our study could conduct short stints of backing up the vehicle

but, on the whole, were not asked to perform reverse driving tasks. Because driv-

ing in reverse would require a model of the world behind the vehicle, instrumenta-

tion of the rear-view mirror, and complex graphical modeling, this system was not

validated for tasks that would require extensive backward driving, such as parallel

parking maneuvers. This is a limitation common to many driving simulators. The

scope of the current XR-OOM system is focused on forward-driving tasks.

Other Road Users

This current paper’s contribution focuses on the system design and validation

of the safety and usability of the system for driving simulation experiments. This

was critical to establish before using XR-OOM in environments with other drivers,

bicyclists, and pedestrians. Additional safety and validation research should be

done before using this system for driving simulation in an environment with other

road users.

Order and Carryover Effects

Our experiments discovered carry-over effects in the driving conditions (A with-

out headset, B with headset with pass-through video, and C with virtual headset

objects).

Specifically, we saw that tasks A and C are ranked lower across all metrics when

task A is run first. When task A is run after task B or C, it is rated higher across

all metrics. Task B is rated higher when done after task C, and task C is ranked

higher in control when done first. Similar effects can be seen when we analyze the

impact of the second task run. In the last task analysis, all tasks are rated lower
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across metrics when task C is the last task performed. This implies that other tasks

are perceived as more accessible after completing task C, and task C is perceived

as more complex when run after the other tasks.

This is not a concern for our system validation test or for experiments that take

place only in a headset condition but should be kept in mind when the XR-OOM

system is used for comparing different headset conditions.

Example deployments

We recorded video prototypes showcasing different ideas to highlight what kind

of studies XR-OOM can support. Here we will show screenshots from those pro-

totypes and explain their background.

Figure 3.6: The four images show different applications in which XR-OOM could
be used.
The Top-left Wizarding autonomy with a virtual driver. Top-right simulating on-
road events. Bottom-left Virtual in-vehicle displays and interfaces.Bottom-right Ex-
ample of situational awareness test .

The XR-OOM system offers various opportunities for extension and enhance-
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Figure 3.7: Work by Bu et al. [53] demonstrating their use of XR-OOM in tandem
with the stationary simulator of the original study.

ment. These include incorporating advanced rendering techniques, implementing

realistic reflections, automatically adjusting the position of the virtual sun based on

weather conditions, and enabling geo-location features. An important step in fur-

ther developing XR-OOM is integrating globalized or pre-mapped environments

into the XR software tracking algorithm. This integration, as demonstrated by

Bu et al. [53], provides a more controlled and precise environment for conducting

studies. Additionally, a comparative study building on prior research showcases

the usability and effectiveness of the XR-OOM system. The findings of this study

contribute to the growing XR-OOM repository and highlight its potential as a valu-

able research tool. (See Figure 3.7)

3.7.4 Follow Up Work

Moving Beyond Cars

In summary, the XR-OOM system has made significant contributions to human-

automation interaction and autonomous systems. XR-OOM has enabled re-

searchers to study and understand the complexities of AV interactions, trust-

building, and collaboration by providing a rich and immersive environment.

The integration of the ROS system and advanced XR rendering capabilities
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makes XR-OOM an exceptionally versatile and compelling test platform, extend-

ing its application beyond the automotive and AV domain. This platform holds the

potential for evaluating robotic behavior in virtual environments, offering valuable

insights to designers. The seamless integration with ROS facilitates rapid iteration

and development of designs, making XR-OOM and XR methods a useful tool for

exploring and experiencing virtual robotics in real-world settings.

3.8 Conclusion

In this chapter, I discussed the work done on the XR-OOM driving simulation

platform and demonstrated its potential as a valuable research tool for conducting

driving studies. The system could support various experimental studies, includ-

ing testing new displays and controls, simulating visual impairments, and study-

ing driver behavior and performance. The system’s capability to meaningfully

place and track virtual objects in the environment extends its potential to test ex-

traordinary traffic conditions and assess drivers’ responses to different scenarios.

The structure of XR-OOM allows for flexible addition of these and other scenarios,

devices, controls, and simulated AV behaviors.

XR-OOM built on early findings of VR-OOM and deployed absolute-referenced

sensors systems for the head and vehicle tracking. At the same time, this work

highlighted some critical limitations of XR technology; the cameras used by the

XR headset need to adjust their exposure quickly in high dynamic range envi-

ronments and support variable refresh rate capture to avoid refresh-rate aliasing.

Making these settings available through software is essential to address a respon-

sive experience. These elements are critical for the safe deployment of XR-OOM,

especially as faster scenarios are deployed.
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Some additional contributions of XR-OOM are:

Logistic and SOP Preparing XR-OOM for deployment requires significant prepa-

ration, as its deployment is in the natural world. This includes getting permission

to use parking lots, checking weather forecasts, charging batteries, etc. The goal of

the publication of XR-OOM’s SOP is to support the replication of this method.

Safe deployment The deployment of especially low-speed tasks can be done

safely and directly.

Impact of XR-headsets The experiments showed that while the freedom of mo-

tion is somewhat limited by wearing the XR-headset, driving, following traffic

rules, and planning trajectories is still possible with contemporary(2022) hardware.

This also applies to operating the control surfaces of a vehicle, which participants

mostly completed.

Navigating around virtual objects While participants drove more cautiously

around the virtual objects, their behavior was still comparable to navigating the

physical world obstacles.

Rich streams of data The synchronized data capture setup of XR-OOM enables

qualitative and quantitative analysis methods. In this study, we coded partici-

pants’ ability to drive(qualitative) and performed quantitative analysis on their

driving path by calculating the Frećhet distance from an ideal track.

Future research could explore integrating advanced rendering techniques, im-

plementing realistic reflections, and incorporating globalized or pre-mapped envi-

ronments for more controlled and precise tracking within the environment.
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CHAPTER 4

INTERACTING WITH OTHERS

Figure 4.1: StrangeLand uses a multi-person virtual reality driving simulation en-
vironment to help illuminate how drivers interact in different cultures. The partic-
ipants are wearing VR headsets with leap motion (hand-tracking device) mounted
on the front. Their hands are on the steering wheels, and gesturing at each other.
Across from them are laptops facing the researchers.

Interaction with other people is highly culturally dependent, part of what de-

fines a culture. Fundamental interactions like greeting one another, signaling to let

someone pass, and many other small and large interactions are informed by local

culture and norms derived from that. Tourists and their behaviors will often give

light to these rules as they unintentionally break them by being unfamiliar with

local norms. For example, in NYC, it is customary NOT to stand in the middle

of the sidewalk, even if it is an excellent spot to take a picture. Breaking this rule

makes it easy to detect tourists. Understating these local norms is crucial when in-

troducing autonomous agents into these environments, especially when assessing

corner cases.1

1This chapter reuses material from the original publications [77]. Those works were co-authored
with Carmel Zolkov, Natalie Friedman, Talia Wise, Navit Klein, Avi Parush, and Wendy Ju, but I was the
lead author of those papers and the primary researcher on that body of work.
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Multi-user Virtual Reality(VR) simulator could offer an excellent opportunity to

uncover some of these natural patterns of interaction. All interaction elements are

simulated and can be recorded for later behavioral analysis. Integrating this with

simulated agents allows it to test new designs of robots and their behaviors in a

simulated multi-user environment to understand how the design changes affect

interaction, use of the robot, and ideal uncovers serendipitous interactions with

these agents.

This kind of work can also already happen before robots are deployed. A spe-

cialized multi-user simulation could be used to look at naturalistic interaction in a

given scenario to discover social signals and common interaction patterns that arti-

ficial agents or robots might need to adhere to in the future. One such environment

is the traffic environment with local and regional differences in driving styles. The

understanding will need to develop beyond anecdotes and observation toward a

concrete understanding of the parameters, behaviors, and interaction patterns that

differentiate driving in one locale from another. Today, autonomous vehicles (AVs)

are programmed to drive within the boundaries of the law. Still, they seem to elicit

higher-than-normal [180] rates of accidents because they do not conform to local

driving norms [190]. Officially, many of these accidents are classified as the fault of

the non-AV car [119], but it would be better if the AVs could avoid accidents and

faults by adapting. For example, AVs could adapt to how different cultures inter-

pret speed limits, how long they wait or how they slow at a stop sign or before a

left turn, what acceptable follow distances are on a highway, and how much room

they give a pedestrian.

Vehicle-to-vehicle interaction is a great first scenario for uncovering local inter-

action norms. While technically, particular interactions are codified in traffic reg-
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ulations, e.g., the use of indicator lights, we can see differences in how these rules

are interpreted and how they play out in the local driving culture and regional

context. Hence, this project explores a shared multi-participant VR simulator that

can be used to uncover and analyze local behavioral norms, specifically focusing

on ambiguous traffic situations that force drivers to interact.

In discussing Uber’s drivelers car experiment, Uber’s Engineering Director, Raffi

Krikorian, stated, “If we can drive in Pittsburgh, we can drive anywhere.” [88] This

statement was intended to highlight the benefit of testing cars in an environment

with poor roads and varied weather. Still, anyone who has driven across borders

knows that driving culture varies profoundly from one locale to the next.

Over two decades ago, Oskar Juhlin noted that in designing automated driving,

“it is essential to understand how drivers themselves achieve coordination. Com-

puters, running by rules or algorithms, must function together with other road

users. They must adapt to them, or the drivers will have to adapt to the new

machines. If the artificial drivers are socially incompetent, this could lead to ambi-

guity and misunderstandings, which seriously strains other road users.” [106]

While cross-cultural differences in driving are widely known and accepted, there

is limited prior work documenting and detailing these differences, none doing so

in quantitative ways that could guide machine recognition or response. We began

our design effort by looking at related work that measures driver behavior and

captures the interaction between drivers. We explain how these developments

informed but also necessitated the StrangeLand system.

This chapter reuses material from the original publications [77].
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4.1 StrangeLand Overview

For AV to adapt to local norms in human driving, it is critical to profile how

human driving differs across geographical locations. While ethnographers have

qualitatively described regional differences in driving style, data-driven statistical

models help computer-driven cars drive like locals and recognize how local drivers

are signaling through hand/body movement and motion of their vehicles. To this

end, we have created an experimental system (see Figure 4.1) and method to pro-

file driving behavior and interaction using a multi-participant virtual reality (VR)

driving simulation environment. The system was designed to be portable and to

support cross-cultural experimental deployments. We aim to ensure the system

is operational and functional, can model diverse scenarios, generates data fit for

analysis, and captures expected behaviors. We describe the system, test scenarios,

and findings of the proof-of-concept study conducted in the U.S. and Israel.

4.1.1 Background

Self-report Based Studies

Transportation researchers have used questionnaire- or log-based assessments to

profile several characteristic differences between drivers in different regions, often

to account for differences in accident rates. Özcan et al. examined differences

in driving behavior across six countries–Finland, Great Britain, Greece, Iran, the

Netherlands, and Turkey [165]. Using a driver behavior questionnaire [172], The

researchers found that self-reported differences in aggressive driving violations,

ordinary driving violations, and driving errors corresponded with differences in

the accident rate of each country of the driver’s origin.

Another focus of cross-cultural research is on driver aggressiveness, defined by
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Lajunen et al. to be “any form of driving behavior that is intended to injure or

harm other road users physically or psychologically. ” [124]. Driver aggressive-

ness scales [41] has been used to document differences between Serbian and Ro-

manian drivers [175], driving anger in Spain [192], causes of driving differences

of drivers in China [66], and differences in driving between urban and rural U.S.

drivers [40]. Driving skill has also been posited to cause the difference between

cultures. However, research (also by Özkan et al. [165]) examining that hypothesis

using the Driver Skill Inventory [123] found mixed support for this hypothesis.

One issue with profiling cultural differences in driving with questionnaire-based

surveys of driving is that these methods treat cultural differences as the accumula-

tion of individual or personality differences of the people from that culture. These

methods cannot easily interrogate the social aspects of driving culture. (These stud-

ies may also feature confounds as people from different backgrounds or cultures

might have more or less self-awareness of or willingness to disclose their driving

skills or behaviors [8].)

4.1.2 Capturing Driver Interaction

While driving style research focuses on the differences in the aggregation of

individual behaviors, driving interaction researchers are concerned with the in-

teractions between drivers as the defining characteristics of regional driving style.

Sociologist Dale Dannefer, for example, mentions informal norms such as follow-

ing distance, merging behavior, and right-of-way rules, but also a performance of

attention or inattention [36]. Factor et al. extend this perspective, arguing that

some crashes are not the result of individually risky behaviors but rather the re-

sults of “social accidents,” caused by interactions between people from different

social groups interpreting and responding to situations differently [52].
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Ethnographic Study

Until recently, most of the research on driving interaction was based on direct or

recorded observation. Juhlin, for example, employed ethnographic techniques by

observing students at a Swedish driving school, interviewing participants, record-

ing driving sessions, and transcribing and thematically coding incidents of coop-

eration between road users [106]. Similar investigations have been made of social

agent navigation in urban traffic [198], driver-bus interaction, [161], pedestrian-

vehicle interaction [43, 191] and interactions at petrol stations [161]. Vinkhuyzen

and Cefkin used ethnographic techniques to understand how AVs will engage

with pedestrians, bicyclists, and other cars in a socially acceptable manner. They

noted the difficulty of making observational distinctions with these methods [205].

Multi-driver Simulator Studies

Zaidel posited the possibility of formalizing the interactive model between

drivers as a mathematical model that would enable the prediction of behavioral

mixes in 1992, suggesting that computer and laboratory simulation would be help-

ful methods for beginning the research. Actual simulator studies of driver interac-

tion are recent phenomena [217].

While many outside the automotive research domain assume that high fidelity

and high immersion simulation is necessary for an ecologically valid driving re-

sponse, guidance from driving simulation experts indicates that appropriate simu-

lator fidelity provides the greatest fidelity for the aspects of driving under test is

what is critical [128]. Driving simulators allow experimental control of conditions,

reproducibility, ease of data collection, and the ability to test potentially dangerous

situations in real life [38]. Even without perfect ecological validity, driving simula-

tor studies can help researchers focus on factors or behaviors to study in follow-on
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research.

Driving interaction studies have primarily been made possible through multi-

driver simulation platforms. Using multi-driver simulation studies to examine

the interaction between drivers was first performed by Hancock and De Ridder in

2003 [86]. They placed two participants into adjacent full-vehicle simulators that

share a single virtual world to understand collision avoidance behaviors. More

recently, Muhlbacher et al. 2011 developed a platform to study interactions be-

tween four drivers in a platooning scenario [154]. Researchers at the Institute for

Transportation Studies at the German Aerospace Center (DLR) created a Modu-

lar and Scalable Application Platform for ITS Components (MoSAIC) in 2012 to

understand interactions between V2V connected vehicles and non-equipped vehi-

cles [62, 90]. Their setup features multiple modules of high-fidelity driving sim-

ulation, such as three-display fixed-base driving simulators with a complete ve-

hicle seat and driving interface. These researchers noted the possibility of using

such a multi-driver simulator to study the effect of varying levels of drivers’ ex-

perience or different cultural backgrounds or to study the influence of social psy-

chological phenomena in traffic, such as the merging-giveaway interaction [162].

They have published studies using this setup to study cooperative lane-change

maneuvers [90] and traffic-light assistance [173] Houtenbros et al. used linked

fixed-base driving simulators to study whether audio-visual feedback would help

participants in their interactions with other drivers; in their study, a research ex-

perimenter drove one of the vehicles [96].

Other research, particularly targeting other road users, has also used multi-

participant simulation setups. A recent publication by Abdelawad et al. [2], for

example, compares the aforementioned MoSAIC system, the Tokyo Virtual Liv-
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Multi-driver Simulator Research Study focus
Hancock and De Ridder 2003 [87] Collision Avoidance
Muhlbacher 2011 [154] Platooning
MoSAIC/DLR
Heesen et al. 2012 [90]
Friedrich et al. 2013 [62]
Oeltze et al.2015 [162]
Rittger et al. 2015 [173]

Cooperative driving
Overtaking
Platooning
Traffic light assistance

Tokyo Living Lab
Gajananan et al. 2013 [64] Rubbernecking

Houtenbros et al. 2017 [96]
Audio-visual support for
intersections

Feierle et al. 2020 [56] Driver-AV interaction

Table 4.1: Multi-driver Simulator Research

ing Lab networked driving simulation (which is built on OpenStreetMap and

CityEngine tools [64]), and the Driving and Bicycling Simulation Lab at Oregon

State University. They mention using the setup for training drivers, for stud-

ies of truck platooning, or hybrid traffic scenario enactments. A recent collabo-

ration between the University of Wisconsin-Madison and the University of Iowa

researchers tested the feasibility of conducting driver-pedestrian simulator exper-

iments with multiple people [108]. At the time of its original publication, Strange-

Land was the first proof-of-concept, and we have found no publications yet de-

scribing studies designed or run on the platform.

While many multi-participant simulator systems are designed to be hybrid, each

individual station tends to be quite large. This is because many interaction scenar-

ios, such as merging or four-way intersections, require a wide field of view for

each participant to see one another. (Platooning is an exception; since the main

activity is ensuring your vehicle does not run into the car in front, the broad field

of view is unnecessary for platooning interaction simulations.) This necessitates

multi-screen or multi-projector set-ups; these scenarios cannot be run naturally
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using a single-screen interface.

While commercial gaming systems, such as Grand Theft Auto V, which enable

multi-player interaction, have been widely available for some time, attempts to use

these systems for serious driving research have been foiled or shut down by the

gaming company [197]. In any case, such mods do not record critical data about

the position and behaviors of each driver’s car for post-analysis and study and

have not been validated to produce differences in driving where we expect to see

them in regional driving culture.

4.2 Original Implementation

Virtual Reality Driving Simulation Our system builds on previous multi-

participant driving systems using virtual reality for networked driving simula-

tion. The advent of networked head-mounted virtual reality platforms makes it

possible for participants to have a wide field of view without having a sizeable

fixed-based simulator. While driving simulation was one of the motivating uses

of early virtual reality [17, 109], the use of virtual driving simulation for the ex-

perimental study of driver behavior is still relatively new [99, 194]. Virtual reality

headset technology makes it easier to recreate the immersion and peripheral cues

usually associated with bulkier three-screen or curved-screen driving simulation

set-ups. Early research suggests driving performance is similar to that of desktop

driving simulation platforms [25].

Lightweight, consumer-grade virtual reality platforms also make multi-driver

interaction simulation easier to deploy in more places; this is critical to the goal

of understanding cultural differences in driving. No previous system of multi-

participant driving simulation using VR has been built for this purpose. The clos-
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est such system that we have learned of in our background research is a project

by researchers at the University of Leeds and the Lincoln Center for Autonomous

Systems in the UK. They used VR and participant tracking to have two people with

VR headsets walk freely across a space and play a game of ”Sequential Chicken”

with their vehicle avatars in a driving simulation environment [24]. That system

illustrates the feasibility of the proposed system in this project but does not map in-

grained driving interaction behaviors to virtual driving as our proposed research

would.

The StrangeLand simulator uses common virtual reality hardware to make

the system portable, low-cost, localizable, extensible, and accessible to more re-

searchers. Our system builds on a body of work in the realm of multi-participant

driving simulation to enable controlled experiments with common scenarios in a

safe and repeatable fashion. As part of the design effort for this project, we made

portable equipment set up for the driving simulation experiments, developed a

multi-participant virtual reality (VR) driving simulation environment, and created

and tested interactive driving scenarios. We instrumented the equipment to cap-

ture participant driving behaviors and implicit and explicit interactions. Our plat-

form for analyzing our data streams allowed us to subjectively evaluate each driv-

ing interaction by giving researchers the ability to replay and analyze the driving

interactions.

Here we describe the design of the system and experimental protocol of Strange-

Land.
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4.2.1 Setup

Since its original publication in 2022, the StrangeLand simulator has received

significant updates to its hardware and software. In this section, we will first de-

scribe the original system and then, at the end, describe the improvements. The

hardware setup for the StrangeLand simulator uses consumer-grade virtual reality

(VR) gaming components.

The functional components of the system are as follows:

Laptop The simulator runs on two Alienware 15 R4 Laptops (Intel i7 8750H CPU

& NVIDIA GTX 1070). Each laptop drives one VR headset.

Head Mounted Display We used the Oculus Rift CV1 VR headset for develop-

ment. The hardware could be any VR headset that supports OpenVR/SteamVR.

Hand tracking To record and render the participants’ hands in the virtual world,

each headset has a LeapMotion hand-tracking device mounted on the front. Ren-

dering the participants’ hands in VR helps the participants to feel present in the

simulation environment, and enables them to use their hands to signal with other

participants. While each participant always sees the rendering of their own hands

inside their vehicle, the participants can only see each other’s heads and hands

rendered when their vehicles are within 20 meters of one another in the virtual

environment.

Drive Interface Each participant used a Logitech G29 gaming interface, with force

feedback steering wheel and gas/brake foot pedals, to drive their virtual car. These

control surfaces are similar to what participants are used to in everyday driving

and hence are more likely to yield naturalistic driving behavior.

Network Router The computer for each driver is connected to a standard local

area network connected through an ASUS RT-AC5300 router. (The system also ran
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successfully on other LAN routers.) Currently, the only requirement is that the IP

addresses of the laptops need to be fixed.

To make it easier for researchers to transport and deploy studies to different ge-

ographical locales; we designed the system to be portable. We also designed the

system to be relatively inexpensive; currently, the two-person setup for Strange-

Land costs about $ 5000 USD.

Deployment Flexibility

We selected parts with the goal of fitting the parts for the whole system (minus

the laptops) in one large suitcase (76 x 48 x 29 cm) that weighs less than current

U.S. airline limits for overweight baggage. In the below Figure 4.2, one can see

how the components can all be packed into one single suitcase. Important to note

that the rugged parts of the setup (e.g., mounting points of the steering wheel) are

facing the outside, protecting the more fragile components like the HMD. Also,

the laptops must be transported as carry-ons rather than checked baggage due to

current limitations on cargo transport of lithium-ion batteries.

4.2.2 VR Driving Simulation Environment

As with the hardware, the software components of StrangeLand were selected

and designed to make it easier to deploy and replicate studies and add and extend

the platform. The software is based on widely available popular software packages

and is all low-cost or free.

Game engine The simulation was built in Unity 2018.4 using the now-legacy

built-in networking library to synchronize the two clients [201]. This enables par-

ticipants to see other drivers in their virtual vehicles and note their head orienta-
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Figure 4.2: The complete StrangeLand simulator hardware in one suitcase (with
packing foam removed). The updated version requires even less space and hard-
ware. See Figure 4.3

tion or exchange hand gestures.

Vehicle model We used a prefabricated vehicle model and logic from the

GENIVI [68] driving simulation platform. We extended the model to include a

car interior and interaction logic for the steering wheel, horn, and indicator lights.

Head mounted display interface The main VR interface used in Unity is the

OpenVR library [203] connecting to SteamVR [202].

Hand tracking The Orion software pack from Leap Motion for the hand tracking

in combination with VR. [200]

Environment elements We developed the road track in which the different sce-

narios took place was modeled using openly accessible textures. Buildings were

placed at the corners of the intersection to ensure participants could not see the

entire track without approaching the intersection.
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4.2.3 Improvements in the Version from 2023

In 2022 and 2023 the code was refactored and updated. In this section, we will

describe the changes to the system and what it means for the simulator.

Headset Technology

Since the original release of StrangeLand, headset technology has improved sig-

nificantly. The previous version used the Oculus CV1, a headset that is no longer

available and that used an external computer to render to the display. New head-

sets now incorporate the computer that renders the display directly in the headset.

The new hardware also performs inside-out tracking, which includes hand track-

ing. The new implementation uses these new hardware and features.

Since the rendering is done on the headset, the setup only requires one laptop

now acting as a server, the headset connects as the client.

Hand tracking used to be done by the LeapMotion controller can now be handled

internally by the headset without any additional hardware, further simplifying

the deployment of the system. the main drawback of using a standalone headset

is the limited CPU/GPU performance. Some materials and models needed to be

optimized and simplified to make sure the headset could render at a high frame

rate throughout the study.

Network Code

In 2019 Unity deprecated the network code used in the original StrangeLand im-

plementation. after a few years of no officially available net code, Unity released

NetCode for GameObjects in 20222. This implied that substantial parts of the system

2The official 1.0.0 release was on 2022-06-27 https://github.com/Unity-Technologies/
com.unity.netcode.gameobjects/releases
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Figure 4.3: The updated version of StrangeLand requires even less space. All com-
ponents fit easily into one rugged travel case. Credit: Hauke Sandhaus

needed to be rewritten. While there are many detailed changes, the main topolog-

ical changes in the internal system are as follows:

1. All simulation now happens on the server; this includes all participant in-

put capture (e.g., steering wheels), data recording, and rigid-body/vehicle

simulation.

2. The headset needs to follow the simulated data and “mostly” renders the

environment. That implies that more data needs to be shared between the

headset and the server, such as indicators and the use of the car horn.

3. The questionnaire data handling needed to be completely reworked to allow

for editing of the questions without recompilation. Unrelated to the network

changes, the new implementation of the questionnaire screen also included

showing pictures during the questionnaire to contextualize the questions for
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the participant. These could either be predefined pictures in unities Resource

folder or a screenshot taken during the study.3

The practical implications of these changes are that less hardware is used; the

simulator can be deployed with just two headsets, steering wheels, and a mid-tier

gaming laptop (see Figure 4.4). More implications of this re-implementation can

be discussed below (see section 4.5.1).

Figure 4.4: Setup of the re-implemented StrangeLand from 2023.
The Screen in the back, while helpful for demonstrations, is not required to run the simu-
lator.

4.2.4 Interactive Driving Scenarios

To capture driver interaction, we developed traffic scenarios that required

drivers to negotiate with one another to complete their driving tasks. For example,

we designed an intersection with a four-way stop scenario where multiple drivers

3If a screenshot is taken, the image is serialized and sent back to the server and amended to the
data storage.
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(a) S:1 (S:2) Orth. A
Right

(b) S:3 Opposite
Pedestrian

(c) S:4 Opposite Left (d) S:7 (S:8) A Behind
B

(e) S:5 (S:6) Merging A Right (f) S:9 (S:10) A
Blocked Lane

Figure 4.5: Showing all the types of scenarios developed for the study. Scenarios
that are the exact mirror of another scenario are not shown. Instead, the mirrored
version is referenced in parentheses in the image caption.

arrive at approximately the same time. Because it is difficult to decisively deter-

mine who arrived at the intersection first, drivers need to observe each other and

negotiate who will go first to avoid colliding. These scenarios were intended to

elicit routine interaction responses that drivers use every day. We manually se-

lected the driving scenario, counterbalancing the order of scenarios across partici-

pants after iterative designing and optimizing the scenarios through pilot studies.

We tried to account for the inconsistency of signage and road standards across

different locations to enable cross-cultural studies. For example, yield signs have

a consistent meaning across cultures [211] (although with slightly different stan-

dards about height and placement [81]), so we tried to use more yield signs than

stop signs, which have greater cross-cultural variance.

We designed and tested several scenarios to ensure that drivers were clear on
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their driving goals but not on the right of way concerning the other driver. We also

designed the scenarios to be counterbalanced so that both participants in the study

had a roughly equivalent experience. So, for example, if one participant turns left

and the other turns right, we include the reverse scenario. Here is the resulting set:

S:1 - Four-way Intersection: Car A and B are orthogonal to each other at a four-way

intersection (A begins on the right). Car A must turn left while Car B is instructed

to go right. The two cars are turning towards each other.

S:2 is the counterbalanced of four-way intersection scenario S:1.

S:3 - Intersection with Pedestrian: Car A and Car B are instructed to go straight at

opposite sides of an intersection; as the cars approach, one pedestrian will start to

walk across the street. The pedestrian has, by design, an ambiguous starting time,

as they only begin moving as either car A or B approaches.

S:4 - Opposing Left Turns: Both Car A and Car B appear at opposite sides of an

intersection, and both receive instructions to turn left [174].

S:5 - Merging: Car A (right) and Car B (left) are merging onto the highway from

their own respective roads. In most merging situations, it is clear who has the right

of way because one car is merging onto the road of another car. However, in this

scenario, both roads merge into the same road giving neither right of way.

S:6 is the counterbalanced merging scenario S:5.

S:7 - Overtaking: Car A is driving behind Car B. Car B is instructed to “stop”, while

Car A is instructed to “Hurry up.” Car A must decide to overtake Car B. Driver of

Car B is unaware of the instructions to the driver of Car A, leading to uncertainty

about their action. It is important to see when, how, and if they decide to overtake

Car A.
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Figure 4.6: Screenshot of the behavioral analysis tool. At the top left and top right,
we see the map and graphs videos showing the behaviors as they took place. At
the bottom, there is space for writing (bottom left) and reading (bottom right) an-
notation for this particular participant pair and scenario.

S:8 is the counterbalanced overtaking scenario S:7.

S:9 - Blocked Lane: In front of Car A, there is a parked car with hazard lights block-

ing the lane while Car B is approaching the oncoming lane. As a result, the driver

of Car A has to decide whether or not to wait for Car B while the driver of Car B

can choose to stop and let Car A pass.

S:10 is the counterbalanced block lane scenario S:9.
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4.2.5 Behavioral Analysis Support

Because our driving simulator intends to capture a range of interactive behav-

iors which we expect to differ as a function of the drivers’ cultural norms, one key

aspect of our simulator design is that it needs to support the observation and anal-

ysis of the communicative actions of drivers. Typical driving simulation studies

often measure performance or driving behavior in response to pre-defined stimu-

lus events which occur in a controlled environment. Our simulator also contains

a controlled environment but, in other ways, is more like a naturalistic study of

group interaction; researchers observe how the interaction emerges between the

participant under different controlled circumstances.

To enable a qualitative analysis of driver interaction, we developed an interac-

tive behavioral analysis tool on a Jupyter notebook (Figure 4.6). This tool allows

us to reconstruct and analyze interactions from multiple viewpoints reconstructed

from the generated data. The notebook includes a map view, speed, and indica-

tor line graphs, in addition to synchronous video data from the VR world. These

multiple viewpoints enable qualitative as well as quantitative analysis of the in-

teractions. An example of the output from the interface can be seen in Figure 4.7.

In this figure, the accelerator brake input and steering input is recorded. In the

beginning, one can see that the steering input is at the center when the vehicle

accelerates.

Map View We generated videos with a map view of the car based on the simula-

tor data (speed, location, head orientation). This top-down view allows us to intu-

itively examine the traffic scenario and discover behaviors from the participants,

e.g., how some participants continually creep into an intersection.
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Figure 4.7: Top-down view of the virtual environment. This shows the path of
two participants in the scenario, Blocked Lane. The green tick marks indicate the
position over time. The y and x-axes are measured in meters with the intersection
at 0/0.

Steering, Speed, Paddle and Indicator View Additionally, we generated ani-

mated graphs to analyze the measures and played them back in conjunction with

the map view. These graphs give a more detailed look at the participant’s re-

sponses. E.g., it is easily visible when and how strongly someone slowed down

in reaction to an incident or event.

Video Data In addition to the generated data view, we can playback the syn-

chronous video data from the GoPro and the respective laptops’ screen recordings.

This video data allows for a subjective first-person evaluation of the ”normalcy”

of the interactions.

In addition, we use an in-simulation questionnaire to assess the situation

awareness of each participant, structured using three levels (perception, compre-

hension, and projection), known as the SAGAT method [50]. We used this method

to avoid taking participants out of the virtual world many times throughout the
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Figure 4.8: Post-interaction questionnaire internationalized in (a) English and (b)
Hebrew.

study. An example is shown in Figure 4.8. Within the VR simulator, both par-

ticipants are prompted to answer questions that appear on a translucent screen

in-world after each scenario. The first question of the questionnaire would begin

consistently across scenarios, asking about certainty (i.e., “I clearly understood the

intent of the other driver(s)”).

In total, seven different questionnaire sets were asked through this VR method.

These included fact questions (i.e., “At the intersection, who moved first?”) and

then understanding the facts (i.e., “Why did you move first?”). While this struc-

ture of fact & understanding remained for the other question sets, the topic differed

(i.e., turn signals, stopping, who moved first, false starts, overtaking, eye contact,

cutting off). We chose to ask about a particular topic based on the scenario. For ex-

ample, in the four-way stop scenario, the participants would be asked about turn

signals, who moved first, false starts, and eye contact but not about overtaking, as

this did not happen in this scenario. (A complete list of all possible questions can

be found in Appendix A.3.1)

In the 2022-2023 updated version of StrangeLand, we also implemented an addi-

tional recording tool that fully reconstructs the scenario in 3D. The tool is rather

versatile and can be used to record all kinds of interactions happening in VR. It is
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called ReRun and the subject of Chapter 5.

4.2.6 Instrumentation of Behavior and Interaction

By logging data about the participants, their behavior, and the state of the vir-

tual world throughout the interaction scenarios, we can collect key measures that

we believe are instrumental to understanding driver behaviors and their interac-

tions with each other. Many of these measures were informed by SAE’s J2944 Op-

erational definitions of driving performance measures and statistics [163]. These

quantitative measures are particularly important as a secondary step to verify find-

ings from qualitative video plot analysis findings.

We describe a non-exhaustive list of possible measures that could be analyzed

out of the given data below:

Hand pose: we collect the hand pose and articulation over time through the Leap

Motion or build-in hand tracker. We can tell if the participants have their hands on

the steering wheel, whether they are steering or waving to someone.

Head orientation: Through the Oculus Rift or Quest 2, we can collect the position

of the head relative to the world. From this data, we can tell if car B, in the dyad,

is in the field of view of car A. SAE J2944 does not have any recommendations re-

garding head orientation. However, they guide the need to measure where drivers

are looking, particularly for lane change tasks. [129, 163] It is possible that in longer

scenarios than what we tested here, researchers could also use this measure to in-

fer distraction and fatigue. We can use this in our interaction scenarios to see if

drivers are in each other’s field of view at different points in their interaction.

Steering Direction: Through the steering wheel, we collect the rotation informa-
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tion of the steering wheel’s position. This, combined with event logs from the

simulation environment, allow us to measure steering reaction time, movement

time, response time, and steering reversals. The steering input is recorded directly

from the steering wheel as a floating point number (-1.0 Left; 0.0 center; 1.0 right).

Pedal Input: Through the gaming interface, we can measure the participant’s in-

put to the accelerator and brake. This can be used with simulation environment

event logs to infer the accelerator and brake response times.

Car Position, Velocity & Acceleration: In the simulator, we can determine the po-

sition, speed, and heading for each car at each moment in time. Additionally, we

also store the car’s velocity. This allows us to measure lane position, lane and

roadway departures, as well as lane changes.

Wait time: Through timestamped data and car positions, we can analyze the wait

time until the participants move in ambiguous parts of the scenarios.

Entropy/Energy: By summing the cumulative difference in longitudinal or lateral

input, we can obtain an “energy” measurement that corresponds to steering re-

versals or excessive changes in speed. For lateral input, this corresponds with the

measure of Steering Entropy used in SAE J2944 [157, 163].

4.3 Proof of Concept Testing

To ensure that our system can produce meaningful measurements that enable

comparing driving behaviors across cultures, we performed a proof-of-concept

test. The aim is to describe the design of a system that allows the capture of impor-

tant cross-cultural differences in driving, the test aims to establish that the system

we built is functional, deployable, reliably captures data, and enables reconstruc-

tion of interactive behaviors. Full-scale study deployment and results featuring
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Confidence
Questionnaire

Answer
Options

I felt the other
driver drove well.

Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I clearly understood the
intent of the other driver.

Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I felt confident about
my own actions.

Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

Table 4.2: A table showing the questions and answers for the confidence question-
naire.

claims about differences in cultural driving behaviors will be attempted and de-

tailed in future work.

During the initial development, the researchers ran an iterative design exper-

iment (N = 10) in Haifa, Israel, at the Technion. Based on the input from these

studies, we further developed the simulator, particularly the scenarios. Some of

the improvements we made during these studies were e.g. adding virtual mirrors

to the car, giving the participant a horn, and adjusting for both short and tall par-

ticipants. After these experiments, we ran more tests at the Technion and Cornell

Tech to further test and verify the system’s stable operation and generate data to

develop and test the data analysis pipeline that could be developed and tested.

4.3.1 Original Study

To ensure the effectiveness and reliability of the initial version of StrangeLand, we

conducted a proof of concept study. This study aimed to validate the simulator’s

ability to produce meaningful data that can uncover various modes of interaction.

By running this preliminary investigation, we aimed to establish the simulator’s

capabilities and its potential to provide valuable insights into driver-driver inter-

actions.
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Participants

For the Proof-of-concept test at Cornell Tech, we recruited using convenience

sampling and had N = 26 participants (18 male, 8 female) between 21 and 41 years

old, with an average age, M = 26.5, SD = 4.45. 24 participants learned to drive

in the United States; one participant learned how to drive in Costa Rica, and one

in India. Of the 26 participants, 3 got motion sickness from driving in the virtual

reality environment. Keeping the headset on during the questionnaire made it so

that participants kept HMD on between vignettes, did less context switching, and

shortened overall time in the experiment. Participants had between 0 and 22 years

of driving experience (M = 9.3, SD = 4.25). When asked how many times they

drove a week in the last year, the answers varied widely, but about half stated that

they had primarily driven three times per week or only when they were in the city.

We also asked where else people have driven for more than one year, outside of

the United States: one participant said Canada, and one said Israel. In both places,

we used a between-subjects study design.

At the proof-of-concept test at the Technion, we recruited using convenience

sampling we had N = 52 (31 male, 21 female) between the ages of 21 and 33 (one

participant was 52). 27 participants knew the other participant in the experiment,

and 25 participants did not know the other participant. All of the participants

learned how to drive in Israel. Out of the 52 participants, 4 got motion sick. Par-

ticipants had between 0 and 30 years of driving experience (M = 6.86, SD = 4.47).

Most participants stated that they drive more than five days a week. We asked

participants where else they have driven for more than one year, if at all, outside

of Israel; 5 participants answered yes; one participant said Romania, one Mexico,

one Germany, one United States, and one Ibiza.
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Although some participants in the U.S. study were not originally from the U.S.,

for the proof-of-concept test and to have a comparable number of participants

across the U.S. and Israel, we have decided to include all pairs in the analysis. This

inclusion may seem less controlled but, in fact, maybe ecologically valid, as the

U.S. site features more tourists and international visitors, and so greater cultural

variance even within the geographical locale is the norm.

Procedure

When participants arrive at the study room, they are led through the informed

consent process and are told about the remedies available to limit nausea, like gin-

ger candies and wet towelettes for the forehead. Next, we start the data recording

on the GoPro. Participants each completed a demographic survey. Next, the partic-

ipants are informed about operating the system: pedals, steering wheel, horn, VR

headset, GPS, hazard lights, and turn signals. They then are told how to answer

the questionnaire in VR, using eye gaze to rest on their multiple-choice answer.

They are instructed not to speak to each other verbally but only to communicate

in the virtual world. They are told that they may stop the experiment at any time

if they feel uncomfortable. [190]

Next, the participants put on the VR headset, put their hands on the steering

wheel, see their hands on the steering wheel, and their feet near the pedals. We

then calibrate the VR tracking system, aligning the virtual world to the physical

world, using the steering wheel and tracked hands as a reference point. Once the

system is calibrated, we tell the participants to drive around an empty course alone

to get familiar with driving in the virtual reality world.

We ask if the participants are ready before beginning the interaction traffic sce-

narios. When they are ready, we manually select the driving scenario, counterbal-
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ancing the order of scenarios across participants. Next, the participants drive in a

given scenario and then answer questions in-world about what had just happened.

After five of the scenarios, we ask the participants to take a break, to prevent nau-

sea. Following that, the participants continue the same process for five more sce-

narios. Finally, to conclude the study, the participants are asked to take off their

headsets, are given compensation, debriefed on the experiment, and be thanked.

In Israel, the average time of each scenario (from the start driving until the end

trigger) was M = 38.58 seconds, with a standard deviation of SD = 17.69 seconds. In

the U.S., the average time of each scenario was M = 34.57 seconds, with a standard

deviation of SD = 24.08 seconds. The average practice times in Israel were M =

110.18 seconds, SD = 30.95 seconds, while in the U.S., the average practice time

was M = 64.22 seconds, and SD= 26.52 seconds.

4.3.2 Findings

Part of our proof-of-concept study deployment was intended as a proof-of-

concept test to see whether and how well the StrangeLand platform achieved the

technical requirements needed for cross-cultural driving interaction research. The

system needed to be readily deployed in various locations, present the same con-

text and scenario across different areas to elicit behavioral differences, and support

naturalistic interactive behaviors between drivers. We discuss our assessment of

these criteria here and then further discuss the interactions and driving behavior

captured by the system.

Deployability

Because we intend for cross-cultural simulation studies to occur in various loca-

tions, the StrangeLand simulator must be transportable and deployable in various
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lab, office, or conference room settings. This study’s two locations were intended

in part to show the practicability of the system for transport. We will also mention

anecdotally that the system was relocated several times and in three different coun-

tries during development. Setup time for the simulation equipment can be well

under an hour if chairs, tables, and power outlets are available. The equipment is

also based on commercially available gaming and entertainment hardware, so the

bulkiest parts of the StrangeLand setup, the steering wheel, can also be purchased

at each study site for ≤ $1000US D.

Controlling Scenarios Across Locations

For the proof-of-concept study, we were able to have participants in our study

drive in exactly the same scenarios in both of our study locations. This was desir-

able in the proof-of-concept study because we wanted to verify that we could elicit

differences in interaction and behavioral measures across two sites and avoid the

confounds that would occur if there were any differences in the virtual surround-

ings.

The system and scenario development required numerous iterations to solidify

the overall protocol. A number of study design dilemmas emerged during sce-

nario development, such as the fact that four-way stops, for example, which are

prevalent in un-signalized intersections in the US, were not at all typical in Israel,

where traffic circles are common. There is also some tension between localizing

the study environment to be typical and familiar to the drivers and keeping the

study environment a little more abstract. For example, SUVs are more typical in

the US, and compact cars are more typical in Israel. Ultimately, we decided to use

the same buildings, cars, and environments in both our study locations for experi-

mental control; if we had varied the environment, however superficially, we would
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have had to perform validation experiments to see, for example, people would be

more likely to yield for one type of car or another.

One important thing to note is that the design of the StrangeLand system makes

it possible for other researchers to test the effect of such variations. StrangeLand

is implemented on the widely accessible Unity game engine. Since many other

simulators use this engine base, their 3D graphic assets and software libraries can

be reused with StrangeLand; this enables flexibility in the scenarios and extends

StrangeLand use for other environments. This flexibility and reuse is an explicit

goal for StrangeLand, especially, after its redevelopment, in which many code el-

ements were rewritten to make them more flexible in how they can be used. We

did not employ any proprietary graphic assets in StrangeLand that we would not

be able to distribute, although employing such graphic assets could improve the

visual appeal of the simulations. As designed, it would be easy for researchers

in other locations to add scenarios or skin the cars, buildings, or signs to Strange-

Land as they deem appropriate for their studies. By making the StrangeLand system

open-source and sharing our study datasets, we make it easier for researchers in

other locations to set up comparison studies and directly compare their results to

ours.

Immersion and VR Performance

At a high level, our goal is for participants to feel immersed enough in the simu-

lated environment to interact naturally with other drivers. Our goal is to elicit the

natural differences in driving that people practice. Part of this, we felt, was that

participants needed to handle the alignment between their physical actions and

that of their virtual avatar and to be able to interact with the other participant as

they would with another person in the real world.
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During the studies, all participants had no problem operating the virtual vehicle

or associating with the virtual representation of their hands. Qualitatively, we ob-

served numerous episodes where participants responded to the gaze and gestures

of the other participant in ways that suggest that the StrangeLand platform sup-

ported their naturalistic interactive behaviors. Quite a lot of gesturing occurred

(see the participant on the left in the Figure 4.1, for example). Anecdotally, ges-

tures from one participant caused return gestures from the other participant. This

is significant in part because StrangeLand is, to our knowledge, the first driving

simulator environment which tracks and renders the hand gestures of participants,

and so is the first system to be able to capture this type of interactive behavior.

For a more quantitative verification of the function and immersivity of the VR

simulation environment, we examined the frame rate, external perceived motion-

to-photon delay and the network delay by comparing time differences from par-

ticipant study runs during the development and after the proof-of-concept study.

For VR applications, the frame rate should be greater than 60 f/s to create an im-

mersive experience [63]. Data analysis from the proof-of-concept studies showed

a median frame rate of 90.9 f/s with a standard deviation of 6.0 f/s. This means

that most frames (> 95%) were rendered within 70 to 90 frames per second. The

researchers’ subjective experience supports this finding during development and

testing, during which no noticeable stuttering occurred. Adhering to these stan-

dards in the updated version was more challenging, as the system needed to ren-

der on the limited on-device hardware.

To ensure that participants did not encounter extended periods of stutter, we

computed a 1d convolution over a window of 4 frames, which reduced the stan-

dard deviation by about half to 3.1 f/s. This finding shows that often a slower
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Figure 4.9: Showing how the f /s vary significantly between each frame and how a
small 5-frame 1-d convolution shows the continues f /s.

frame was preceded by faster frames and that it was exceedingly unlikely (<

0.001%) for any participant to experience a frame rate of less than 80 f/s for more

than 5 frames in a row.

To verify both motion-to-photon delay and network delay, we used a GoPro

action camera (set at a 29.97 f /s setting) to take a video recording with both partic-

ipants in the study setting and their respective virtual views on a laptop screen.

Looking frame by frame at the head and hand motion of the participants, we

could not measure a single frame difference between head motion and the ren-

dered frame appearing on the laptop screen. The headsets were operating in direct

mode, which has less delay than the laptop screen used to measure the delay. The

video was recorded at 29.97 f /s; this sets the upper bound for the frame delay to

be 33 ms.
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The same video source was used to probe the network delay between the two

participants. In particular, the GPS display and the questionnaire screens are

network-synchronized events that use the same network bus used for the trans-

form and hand data. Therefore, the network delay should be consistent. As

with the motion-to-photon delay, the events appear in the same frame; this im-

plies a network latency equal to or less than 33 ms. Studies on networked multi-

player video games, in particular racing games, set the acceptable latency range at

50 ms [28, 166].

Figure 4.10: We used video recordings with the participants’ screen captures in
view to validate both the motion-to-photon delay and the network synchroniza-
tion delay.

Interaction in the Designed Scenarios

Using StrangeLand’s analysis platform, we can replay scenarios to view how the

cars interacted from an overhead perspective. For example, we can see how two

vehicles slow down as they approach each other. Observing this behavior helps us

verify that the two drivers are aware of each other.

114



Since we are interested in studying driving interaction, we looked to see which

scenarios seemed to generate the most driver-driver interaction. By observing and

interpreting the data from our analysis platform, we found that merging scenarios

(S:5, S:6) produced the least amount of interaction. It seemed that one participant

was not waiting or depending on another participant. In contrast, in the overtaking

scenario (S:7, S:8), participant A was, by default, dependent on participant B, and

hence waiting, and monitoring behaviors could be observed.

The analysis platform also allowed us to find scenarios that need to be re-

designed to elicit ambiguous situations. One way to achieve this is by timing par-

ticipants’ arrival at a certain point such that the right-of-way becomes ambiguous.

Waiting on the other car We use car position as the reference to all other mea-

sures. The Figure 4.7 shows a graph from a pair of participants in a basic blocked

lane scenario. In this case, participant B’s lane is blocked by a parked car. The plot

shows the participant slowing down; the tick marks, which are made once per sec-

ond, become closer as the car is now slowly rolling towards the stopped vehicle;

after Participant, A passes by, we see the subsequent left turn of Participant B.

Comfort and Confidence in Interaction We observed that the speed with which

a participant drives is an important measure in understanding their driving behav-

ior. It is closely linked to the participants’ comfort driving at a certain speed given

a certain traffic scenario. The Figure 4.11 shows the average speed in meters per

second for the Opposing Left Turn scenario and their respective 95% confidence

intervals on the second pair of bars. We can see a difference in average speed be-

tween the Haifa, Israel, and New York, New York participants. Israelis appear to
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Variable Name Variable Data Type
Action State DRIVE string

Car AccelBrk 0.2744 float32
Car PositionX -31.0257 float32
Car PositionY 0.0956 float32
Car PositionZ -29.2038 float32
Car RotationX 359.9413 float32
Car RotationY 18.1327 float32
Car RotationZ 0.0018 float32

Car Steering 0.0164 float32
Car VelocityX 2.5615 float32
Car VelocityY -0.0002 float32
Car VelocityZ 7.7710 float32

Event log “ ” string
Frame Number 568646 int32

Game Time 6060.32 float32
Head PositionX -31.3509 float32
Head PositionY 1.1624 float32
Head PositionZ -29.091 float32
Head RotationX 3.9596 float32
Head RotationY 22.47 float32
Head RotationZ 2.0991 float32

Left Indicator OFF string
Left Vectorhand APg... Base64 string

Real Time 1564388496.3204 float64
Right Indicator OFF string

Right Vectorhand ARM... Base64 string
Time Scale 1.0 float32

Table 4.3: This example data frame shows the generated data from the simulator.
Left and Right Vector-hand variables could be decoded into individual bone posi-
tions; here, they are recorded in a compressed format to safe bandwidth.

have driven slower in that specific scenario.

Wait Time Another related measure is the wait time, which is the time between

coming to a stop and resolving an ambiguous situation (i.e., the time they waited

at the intersection). This measure can be found in Figure 4.11 for the Intersection
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Figure 4.11: The comparison of waiting time, driving speed, throttle/brake energy,
and steering energy measures for one example scenario illustrate that the system
generates consistent data. Error bars show 95% confidence intervals.

with Pedestrian Scenario. The first two bars show the average wait time in sec-

onds and their respective 95% confidence intervals. As with the speed parameter,

there appears to be a difference between Israeli and US drivers, with Israeli drivers

waiting longer.

Erraticness of driving Many of the metrics described in SAE J2944 could be com-

puted based on the available data. However, we calculated a simple cumulative

difference for the input parameters, longitudinal (speed) and lateral (steering) con-

trol for the example data. This basic “energy” measurement corresponds to the

steering and paddle input change. This data is exemplified in the last two pairs

of bar graphs, in Figure 4.11 indicating that Israel and the US participants were

comparable in how they felt they needed to provide input into the simulator. This,

by it itself, is a positive finding mainly because none of the participants have to
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over-correct their vehicle input.

Questionnaire Evaluation

Results showed that both populations were certain about their driving and the

other driver’s driving. Results from the 5 points Likert questionnaire show that

overall positive responses were more common for all three questions on certainty,

and the most common answer was ”Agree.” In the United States, for the question,

”I felt the other driver drove well,” the average response was M = 3.91, SD = 1.09.

In the question ”I clearly understood the intent of the other driver,” the average

response was M = 3.85, SD = 1.09. Lastly, in the question, “I felt confident about

my own actions,” the average response was M = 3.97, SD = 0.4.

In Israel, for the question ”I felt the other driver drove well,” the average re-

sponse was M = 3.96, SD = 1.14; for the question ”I clearly understood the intent

of the other driver,” the average response was M = 3.89, SD = 1.14, and for the

question ”I felt confident about my own actions” the average response was M =

3.75, SD = 0.43.

The two groups had statistically insignificant differences in their answers for the

statements ”I clearly understood the intent of the other driver” and ”I felt the other

driver drove well” with two-tailed t-test p-values of 0.187 and 0.1197, respectively.

Participants from the United States agreed slightly more with the statement ”I felt

confident about my own actions” with a significant p-value of 0.0015.

Our situational awareness assessment asked participants what occurred in their

interactions with the other driver. It allowed us to analyze the participants’ aware-

ness of their driving styles and compare their actual actions in the simulator with

their alleged actions as recalled in the questionnaire. While participants in the
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United States accurately recalled their own and their partners’ turn signal use

about 80% of the time, participants in Israel recalled their own turn signal use

more accurately than the turn signals of their partners. This suggests that Israeli

drivers may pay less attention to fellow drivers’ turn signals.

Simulator Sickness

Both driving simulators and virtual reality experiences can cause nausea and

simulator sickness. At the Technion, the Simulator Sickness Questionnaire data

was collected (N = 56) pre-and post-experiment to evaluate the participants’ sick-

ness likelihood and incidence. Out of the 56 participants, four reported nausea.

Overall, these results suggest that the severity of self-reported simulator sickness

with the StrangeLand setup was low.

4.4 Discussion

Our long-term goal in creating the StrangeLand system is to capture cross-

cultural driving differences in a manner that would allow a computer-controlled

car to recognize and respond to local driving norms. As the first step towards this,

we can use StrangeLand to elicit naturalistic driving interaction between people

in different locations in ways that enable researchers to reconstruct and analyze

what transpired between participants and find promising evidence of regional dif-

ferences in driving culture. While this builds on prior work in multi-driver sim-

ulation systems, such as [86, 154], our platform is game-changing because it is

built on lightweight, portable consumer-grade equipment using open software.

This fact makes the system suitable for deployment in multi-location studies in a

manner that previous systems had not achieved; this is why none of the previ-

ous systems had been used for the purpose of profiling cultural differences. The
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difference in cost of these platforms is one or two orders of magnitude. The low-

cost and consumer-product architecture makes it possible for other researchers in

other locales to build their own version of our system and run comparison studies

replicating our methods with their local population.

Scenarios

The design of interactive systems that can respond to culturally-specific driv-

ing interactions requires an autonomous system to recognize interactive bids and

maneuvers by people and respond appropriately. This approach of using simu-

lation environments to elicit naturalistic interactive behaviors can also help de-

velop other interactive products. These could be conversational agents where be-

ing savvy about local norms could improve the product. In staging the scenario,

our work enables the first step towards designing future interactions; it collects

data about how people in different locales currently negotiate these scenarios, giv-

ing us information about what exchanges lead to better or worse outcomes. The

use of the virtual environment to collect this data reduces the effort that is needed

to recognize scenarios and to control for conflating factors when trying to under-

stand interaction in the wild, for example, as Domeyer et al. has done using data

from MIT’s Advanced Vehicle Technology data-set [47, 61].

As mentioned previously, the system and scenario development required nu-

merous iterations to solidify the overall protocol; the scenarios we developed yield

meaningful differences in driver behavior. Of course, these scenarios are not ex-

haustive; however, when compared to the proposed driving interaction frame-

work by Markkula et al. (which was published after our system was developed

and being piloted), we are pleased that our scenarios cover all of the driver-

driver interactions except that where two vehicles are vying for the same parking
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space [136].

One of our goals in future work is to add scenarios and measures to establish

a more comprehensive data-driven model of cultural driving styles. Superficially,

the platform can be ”skinned” to adapt signs, buildings, and vehicles to match

local regulations, regional architectural styles, and typical traffic makeup.

Cultural Driving Styles

While we do not intend these initial implementations and tests to be used for

broad claims about cultural differences, we believe the findings suggest “construct

validity” [34] for cultural driving differences. The early test found statistically sig-

nificant cross-cultural differences in driving between the U.S. and Israeli drivers in

their average recall of turn signals. Additionally, we found a significant difference

in average speed between the two countries while having similar input rates.

This is a positive indication that a more extensive and controlled study with a

deeper analysis of complex interaction patterns would unearth other driving dif-

ferences. Furthermore, this lays the ground for future research which can pro-

file regional differences in driving culture, which are essential for drivers and au-

tonomous systems to adapt to.

Methodological Issues

In running the proof-of-concept tests, we noticed some issues that we think need

to be addressed before the system and protocol can be used for research. For ex-

ample, we noticed that, sometimes, participants were communicating verbally in-

stead of through the simulator despite our instructions. While it is common for

drivers to communicate with passengers within the vehicle, this isn’t the case be-

tween cars. This could affect the verisimilitude of the simulator. Verbal commu-
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nication could also obviate the need to communicate through gesture or vehicle

motion as people would in regular traffic. Therefore, we plan to amend the pro-

tocol to start the study by assessing whether the participants know each other. In

addition, we will physically separate the participants to prevent cross-talk.

During the study, we found that participants did not always start when told

to. This would throw off the timing of our designed scenarios and cause misses

where we intended to have interactions. We are looking into programmatic and

simulator-based solutions that could adjust vehicle speeds so that participants ex-

perience arrival at the critical event simultaneously.

Finally, the counterbalancing of the scenarios caused some scenarios to be ex-

perienced twice from both sides. This potentially could have made the second

scenario more predictable, causing learning and interaction effects. In the future,

we plan to create a visual distinction between similar scenarios by designing trivial

scenery differently. By doing so, we hope drivers are less likely to recognize that

they are in a mirror scenario from one they experienced previously.

Features for Studying Interaction

StrangeLand is not the first multi-user simulator. However, it was designed with

a direct focus on the implicit interaction that happens between drivers as they

encounter each other on the road. These features and their combination is par-

ticularly important as it allows for scenarios and findings not covered by prior

systems.

Hand Tracking When deploying a VR-based simulator, hand tracking is always

crucial as it gives the participants the sense of place necessary to grab and halt the

physical steering wheel. This capability to share the tracked hand data with the
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other networked participants allows for hand gesture communication. Addition-

ally, the head pose is also shared between participants such that another driver can

see where the driver is looking.

Field-of-view By using VR headsets, there is no technical limit to the field-of-

view a participant can achieve by turning their head. Many of the existing multi-

participant simulators feature a three-screen setup that only covers a portion of

the participant’s field of view. While for many driving scenarios, this should not

be concerning, it can become a limiting factor for urban driving with intersections

and interactions happening at 90◦ or higher relative to the participant’s orientation.

StrangeLand allows the participant to look around and gain situational awareness

similarly to how they would in a real car, allowing for interactions with road users

coming from any orientation. This is further aided by the simulated mirrors.

Additional features for interaction have also been implemented; these, however,

can also be found in other simulators.

Limitations

One key limitation of this work is that the studies in both locations were run

by university students. We believe that this is appropriate for proof-of-concept

testing: if you cannot get statistically significant results with students, who are

roughly the same age, similarly educated, and capable of following instructions,

we assume that the protocol will yield better results with participants from a wider

population. However, one side-effect of this participant pool is that many partici-

pants come from a location other than the culture we were trying to profile. This

raises a question on how to correctly screen for a participant from a specific driv-

ing culture, i.e., When someone has driven long enough in a specific location to

qualify for the experiment.
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Over time, when it becomes clearer exactly which measures best capture the dif-

ferences in behavior and interaction between cultures, the open-ended qualitative

observations of researchers can give way to pre-programmed sensors or measures

of key variables. These may someday be captured as standard metrics, such as

those defined in SAE J2944 [163], and be computed from the data generated from

this simulator or instrumented vehicles. Until that time, however, our driving

simulator analysis environment needs to allow researchers to play and replay the

interactions between the participants and code behaviors or data points they think

are notable.

While this system is the first to compare driver-driver interactions across cul-

tures, it is not our intent in this paper to make broad claims about driving cultures.

For future studies using StrangeLand, where the goal will be to characterize driv-

ing interaction rather than prove the system functions, we will make greater efforts

to recruit local participants for the study and be conscientious about how we sam-

ple the population. Certainly, there is a wide range of individual variations in

driving behavior within a culture. Therefore, we are looking for ways to profile

demographic differences within a population to understand how some of these

differences interact with the broader norms in each region. In future studies, we

would like to perform stimulus sampling [210] by incorporating study runs from

three cities in each culture we are trying to profile.

As this is a simulator study, one essential question is how the motions and

gestures captured during the experiment align with those that occur during ac-

tual driving. Simulation studies have been a mainstay of transportation re-

search for many years and generally yield results that correlate to on-road behav-

ior [127, 140, 182]. However, as Mullen et al. point out, while simulator driv-
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ing behavior approximates on-road behavior, it does not replicate on-road behav-

ior [155]. Hence, some efforts to make common instrumentation and measures to

study on-road driving in situ are also needed to complement this work.

While this system was designed and evaluated before the pandemic, this system

could be adapted to be operated remotely with social distancing. For example,

participants can be in different rooms, researchers can maintain a six-foot distance

from the participants, and both participants and researchers would be required to

wear masks.

4.5 Future Work

4.5.1 2022-2023 Implications

Since both the used software and hardware changed significantly since the orig-

inal implementation. A rewritten version was implemented. This new version

follows the same guiding principles we laid out for simulation platforms in the

introduction and can let interactions unfold openly. These changes have been dis-

cussed in Section 4.2.3. The implications of these changes are summarized here.

The re-implementation also offered us to future-proof the simulator by enabling

some desired features. Here is a short list of the most essential features now avail-

able:

Any number of participants The simulator is now designed to handle any num-

ber of participants, with the current implementation handling up to 6 participants

simultaneously. Of course, hardware limitations, especially for the Oculus Quest,

apply.
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Multiple Spawning Types The original version only was capable of spawning a

participant as a driver of a vehicle. The current implementation makes it easy

to spawn participants in multiple different types. This could be pedestrians and

cyclists that then get to generate whatever virtual representation they need to take

part in the simulated environment.

Centralized recording The visualization and analysis of the vehicle data for the

previous simulator versions was particularly tricky as the data was distributed

over the different participating computers. However, due to the changes in topol-

ogy and the requirement to support low-performance devices such as Stand-alone

VR headsets, the server is the only place that computes the physics simulation and

takes direct steering input. This creates one ground truth for the simulated envi-

ronment that is logged and recorded for later analysis, including ReRun (see next

chapter).

The new implementation also requires less hardware (as discussed above) pack-

ing and transportation is thus also easier and safer. (See Figure 4.3.)

4.5.2 Pedestrian Study (JiHyun Jeong)

Other researchers have extended the updated version to facilitate their research

needs. Cornell Information Science Ph.D. candidate JiHyun Jeong [103] builds on

top of StrangeLand, adding the ability to spawn participants as AV-passenger or a

pedestrian beyond the original option to spawn them as the driver of a vehicle [104,

178, 179]. These new spawn types make use of the new flexible implementation of

StrangeLand and allow for integration with other systems like the ZED 2i from

StereoLabs for skeleton tracking.
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Figure 4.12: Implementation of an Autonomous Vehicle passenger and Pedestrian
inside the StrangeLand simulator[104]. Credit: JiHyun Jeong

4.5.3 Use as a Research Platform

With this contribution of StrangeLand, we demonstrated how multi-user simu-

lation can be used to explore and analyze the interaction among participants in a

shared environment. While this example focused on interactions between drivers,

the methodological implications and the system itself can also be applied in other

contexts and research areas, such as HRI and HCI.

The networked multiplayer approach to handling multiple users makes Strange-

Land a platform that could be extended to include multiple participants and robots,

all joining as network clients into the same shared virtual environment. Inter-

actions between these real and simulated agents could then be recorded in con-

structed tasks or more open-ended scenarios to discover how behavioral patterns

and interactions unfold over time.

The use of such controlled but open-ended scenarios could be highly beneficial
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for work on HRI and HCI to discover how design choices affect the future deploy-

ment of interactive technologies.

4.6 Conclusion

In conclusion, the StrangeLand system provides a platform for capturing natural-

istic driving interactions between people in different locations. It uses lightweight,

portable consumer-grade equipment, and open and extensible software which

makes the system suitable for multi-location studies. This also allows other re-

searchers to replicate the methods and run comparison studies with their local

population. The system lays the groundwork for future research to profile regional

differences in driving culture, essential for drivers and autonomous systems to

adapt to.

StrangeLand as a system, especially after its re-implementation(see Section 4.5.1

has been developed to be extensible, to be configured for a variety of scenarios and

research questions (see Section 4.5.2). While the early studies deployed the SAGET

style methodology longer form studies, remote participation studies, and HRI ex-

periments are all within the capabilities extension of StrangeLand can provide.

The pilot studies in this work showed that StrangeLand can elicit participant

responses consistently and record their reactions both through simulator data

streams and questionnaires.

The synchronized recording of all distributed data streams allows for a wide

range of analysis methods. The data can be animated for behavioral coding to

discover interaction patterns (see Figure 4.6); used for established measures such

as steering entropy [101, p.137], or for artificial simulation of driving behaviors.

128



Continued development on StrangeLand aims to incorporate different kinds of

research questions, in particular looking at supporting higher numbers of partici-

pants and integrating virtual robots, and training of artificial agents.
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CHAPTER 5

RERUN

Figure 5.1: Showing four different views inside ReRun of a recorded scenario as it
is being played back.

ReRun1 is a software system to support post-facto analysis in simulation re-

search. While generally application agnostic, the initial version was developed and

used for the recording and analysis of the multi-person driving simulator Strange-

Land, as discussed in the previous section. (See Figure 5.1.)

Just like the simulator itself, ReRun is built in Unity 3D and captures the virtual

behavior of participants and their interactions with virtual objects. These recorded

behaviors can then be played back from any perspective in the virtual space. This

is useful in multi-agent interaction studies, like interactions between drivers or

drivers with simulated autonomous vehicles (AVs). Researchers can sift through

1This chapter reuses material from the original publications [79]. Those works were co-authored
with Harald Haraldsson, Navit Klein, Lunshi Zhou, Avi Parush, and Wendy Ju, but I was the lead author
of those papers and the primary researcher on that body of work.
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scenarios carefully from each participant’s perspective or even from an outside

observer’s perspective.

With this, ReRun revolutionizes the field of qualitative work in VR studies by

providing a unique capability that has been largely absent until now. By offering

the ability to replay and analyze recorded behaviors from various perspectives,

including the first-person ego perspective, ReRun allows researchers to delve into

the intricacies of interaction scenarios in a much more personal and immersive

manner. This breakthrough feature empowers researchers to gain a deep under-

standing of the implicit and explicit signaling that occurs between participants and

other human or AI-controlled agents within the virtual environment.

5.1 Introduction

With the StrangeLand VR simulation platform, we allow researchers to study

how drivers will respond to ambiguous scenarios, to novel technologies such as

AVs, or to critical scenarios (like cars being broken down on the road) without the

risk of staging these situations in the real world [183]. The system is designed to

fully simulate all elements separately, meaning that the scenarios can develop and

unfold naturally. The complex multi-person simulation presents a great opportu-

nity, as the unfolding interactions can be observed from different points of view,

annotated, and behaviorally coded.

5.1.1 System

For this project, we added the functionality of being able to replay simulation

runs to the StrangeLand simulator [77] (see Chapter 4 and Figure 5.2). Because the

StrangeLand simulator enables multi-person interaction, the ability to replay driv-
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ing interactions from different perspectives gives us a greater ability to perform a

qualitative analysis of driving interaction and to explore the role that viewpoint

plays on perceptions of traffic interaction.

Figure 5.2: Participants using the StrangeLand simulator.

ReRun extends the Ultimate Replay 2.0 asset, which is available on the Unity

Asset Store2. This asset is primarily used by game developers for in-game event

replays and offers efficient storage and playback of state-based event data. ReRun

is built on top of this asset without modifying its existing code base. This allows

for sharing of ReRun code with the research community, which can then be run

within projects containing the purchased asset. ReRun implements custom-made

features for conveniently recording and playing back VR interactions. The key

features from this abstraction layer are ready-to-use prefabs enabling the recording

of head pose and hand tracking data, a virtual camera rig for flexible multi-view

playbacks, handling of session metadata, and a decoupled desktop UI not visible

to the VR participant. The updated version of the StrangeLand [77] simulator that
2Ultimate Replay 2.0: https://assetstore.unity.com/packages/tools/camera/

ultimate-replay-2-0-178602
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integrates tightly with ReRun can be found on GitHub3. ReRun is published on

GitHub under the MIT license4.

5.1.2 Related Work

Replaying actions and motions from a virtual environment are a common fea-

ture found in many video games, such as Activition’s Call of Duty and Codemas-

ters’ Grid2. Often, game replays are used to recap important events or even offer

players an opportunity to review gameplay from different perspectives.

Recording the entire game state, then, is a feature common to many commer-

cial game engines. Outside of gaming, virtual reality playback has been used to

help athletes review their sports performance [18], dentists to gain sensorimotor

skill [120], public speakers to understand how their speaking performance might

be perceived [219], and VR experience designers to understand the first-person

experience that viewers may have of their systems [134].

However, the ability to playback driving simulation experiences is novel. For

the most part, driving researchers use event data and virtual telematics data from

the simulation environment to determine driving activities and performance. To

our knowledge, no previous work has been published demonstrating the ability to

playback driving simulation runs for post-facto analysis; this work demonstrates

how it enables researchers to revisit interactions from different perspectives so that

the effect of, say, distracting events or field of view might have influenced driving

interaction outcomes.
3Updated StrangeLand simulator: https://github.com/FAR-Lab/

CrossCulturalDriving2021
4ReRun: https://github.com/FAR-Lab/ReRun
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5.2 Description

To experiment and develop the features, we extend the StrangeLand simula-

tor [77] to allow for recording and playback of the vehicle behaviors (car motion,

wheel, and steering wheel motion, on-screen driving instructions, indicator lights)

as well as the driver’s position and hand gestures.

The published video [77] demonstrates how to record and playback these sce-

narios with different perspectives to form a complete picture of how interactions

occur in this simulator.

5.3 Future Work and Implications for Qualitative Research in VR

To discover how interactions unfold, we need appropriate research tools that

allow for the reconstruction of all elements that influence these interactions. When

it comes to video recordings of interaction unfolding in the real-world many tools,

exist, e.g., Elan [126] and Chronoviz [59] that allow for a post-facto analysis. By

annotating the video, audio, and other recording streams, researchers can reason

through the different signals between participating agents that let to an interaction.

Future work on ReRun should incorporate these kinds of annotation features to

facilitate this kind of analysis inside scenarios in the simulated virtual space.

VR-recorded interactions also offer additional features for interaction recon-

struction. Besides standard features like annotating the time section, the 3d en-

vironment can annotate the 3d relationship between the recorded agents. Further-

more, the recording can be played back from any angle, making understanding

specific points of view more straightforward.

The hope is that this work can find application in interaction analysis far beyond
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the use inside of the AV context. Simulating robotic agents for HRI and interfaces

for HCI could benefit from both open-ended simulations of scenarios and behav-

ioral analysis through ReRun to discover how interaction takes place.

5.4 Conclusion

In conclusion, ReRun extends the StrangeLand simulator to allow for recording

and playback of vehicle behaviors, driver positions, and hand gestures, providing

a comprehensive view of how interactions unfold in the simulator. While demon-

strated within StrangeLand, ReRun more generally is developed as an extension for

Unity that can be used to record and playback for multi-agent interaction that is

taking place in VR. This tool allows for perspective-taking and behavioral coding

to uncover how and why a scenario unfolded in a certain way.

In its initial version, collaborators used it extensively to identify outliers and

discover scenarios for further analysis.

Future work on ReRun should incorporate annotation features to facilitate more

accessible post-facto analysis of interactions in the simulated virtual space. An-

notation in 3D space is a yet unexplored space, making the tool’s design an open

exploration design question. This includes potentially exporting data for further

qualitative analysis and the automatic detection of specific interactions.

This work has implications beyond the AV context, as it can be applied to inter-

action analysis in various fields, including HRI and HCI, by simulating scenarios

and analyzing behavioral patterns.
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CHAPTER 6

CONCLUSION

As technology keeps developing and we engage more and more with proactive

artificial agents, we need new tools that support as designs the process of design-

ing those agents’ behaviors.

These research tools will need to help us understand how our design choices will

shape the environment. Imagining a possible future through immersive simulation

is one way to ensure the design process follows a meaningful direction.

In this thesis, I have explored three different approaches to open-ended simu-

lation that help discover how interaction with autonomous agents can take place.

The three different simulators include elements of letting naturalistic uncontrolled

elements like behaviors (VR-OOM/StrangeLand) and environmental factors (XR-

OOM) play a role in how a scenario places out. And while this work took place

within the context of AV research, the implications can be carried over to other

research questions concerning HRI and HCI.

6.1 Recapping Orbits of Interaction

The development of different simulators throughout this thesis has provided

valuable opportunities to explore various interactions with AVs as an first intel-

ligent agent acting in our world. Each simulator offers distinct advantages and

focuses on other aspects of the AV experience. By leveraging these simulators, this

thesis aims to advance and enhance our understanding of the complexities and

possibilities of interactions within these domains.

As the initial implementation, the VR-OOM simulator leveraged the immersive
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feeling of driving in a car while replacing the visual component of a passenger-

riding experience. This simulator proved particularly valuable in testing critical

and more controlled scenarios. With the introduction of an updated tracking ver-

sion, we were able to incorporate Digital Twin systems, enabling participants to

explore a digital replica of an environment in virtual reality while actively navi-

gating through it. As a result, VR-OOM stands out as the most controlled simula-

tor for individual participants within the context of this thesis work, allowing us

to delve into the inner circle of interaction and gain insights into the intricacies of

user experiences.

XR-OOM, an extension of the VR-OOM simulator, goes a step further by let-

ting the real world literally pass through to the participant’s vision and integrat-

ing the natural traffic environment into the testing process. While still designed

for one participant at a time, XR-OOM offers a rich experience incorporating the

real-world context of traffic scenarios. The visual augmentation provided by the

system allows for the construction of specific scenarios while maintaining a visu-

ally and sensorially immersive environment. As a result, this simulator is handy

for exploring interactions and observing complex designs and behaviors in action.

Lastly, StrangeLand represents the outermost orbit of interaction research, fo-

cusing on understanding interactions with other road users. As a flexible research

platform, it can be extended to include different types of road users and incor-

porates the use of ReRun for behavioral analysis. This outermost orbit enables

a comprehensive understanding of how interactions occur and provides insights

into the cues that participants attend to. With the ability to conduct behavioral

coding, researchers can gain a detailed knowledge of AV behaviors and the behav-

iors of other autonomous systems. The versatility of StrangeLand allows for the
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seamless integration of different methods, such as the Robot Operating System, to

simulate and study realistic AV software or interactions with other types of robots.

Collectively, these different simulator methods enable the gathering of data on

participant behaviors and interactions with each other and the Autonomous Sys-

tem, paving the way for improved design and development of autonomous tech-

nologies.

Finally, all published simulators adhere to the Research Platform guidelines in

Section 1.2.

Accessibility For each simulator, I published the system details like components

and hardware, the study protocols used to run the study, including the used ques-

tionnaires, Standard Operating Procedures (e.g., Appendix A.2.3), and finally, pub-

lications included example data as videos and excepted to demonstrate the capa-

bilities of the system.

Usability All publications included proof of concept demonstration and studies

that showed the system working and generating consistent data.

Adaptability The simulators are built in Unity and heavily make use of prefabs

and separate game objects, with various relationships established through Unity’s

inspector, making the implementation easily modifiable.

Extendable Especially for the simulator StrangeLand, we took good care at writing

the code in such a way as to make it easily extendable while still providing valu-

able features and tools. All simulators are published under the MIT license. (See

Appendix A.1 for links to the different projects’ repositories.)
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6.1.1 The Serendipity of Complex Scenarios

The value of open-ended immersive simulation lies in its ability to foster the dis-

covery of novel combinations of scenarios, technology, and human interactions.

Unlike traditional, tightly controlled scenarios used in lab studies, open-ended

simulation enables a more serendipitous exploration of human-robot interactions.

This approach allows researchers to capture a broader range of experiences, un-

cover unexpected uses of technology, and observe interactions that might not have

been anticipated.

While some open methods exist, such as instrumented free real-world driving,

many immersive driving simulators still lack the naturalistic unfolding of scenar-

ios. Open-ended immersive simulation bridges this gap, providing a platform

where scenarios can organically evolve, reflecting real-world complexity and vari-

ability. By embracing this more open approach, researchers gain the opportunity to

observe authentic interactions in their natural context, leading to deeper insights

and a more comprehensive understanding of human-robot dynamics.

The different simulators presented in this thesis embody these ideas to vary-

ing degrees. Below we assess the different simulators’ strengths and weaknesses

regarding this dimension: (see Figure 6.1)

StrangeLand makes use of controlled scenarios. The starting points and instruc-

tions for the participants are predefined and fixed. That said, the way the scenario

unfolds, how participants interpret the instructions, and interaction with other

drivers lead to unforeseen outcomes.

VR-OOM As this method is deployed on the road, in real-world traffic, it in-

evitably exposes the participant to unforeseen scenarios. Still, all of the visual
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Figure 6.1: On a scale between Lab studies (constrained) and Instrumented free driv-
ing at scale (open). Each simulator has varying degrees of openness they support.
This graphic visualizes were approximately the simulators fall on this dimension.

elements seen by the participant are simulated, giving the researcher a significant

amount of control over the scenario.

XR-OOM is by the simulator most affected by outside world influence, especially

if a participant is not driving the vehicle but is a passenger as a research driver

through regular traffic.

6.1.2 Technological Challenges and Opportunities

VR technology is only in its 3rd generation [185]. The considerable improve-

ments that have taken place since the development of the first consumer headset

(Oculus CV1) to the recently released Meta Quest Pro point towards a field that

will continue to see more improvements. Even if the graphics and tracking qual-

ity only continue to experience marginal improvements, VR-based simulators will

continue to become more immersive and easier to deploy.

In regards to rendering features, it would be great to see improvements in aug-

mented reality glasses that include more contextual awareness for both light and

sound. Features that have now been shown to be available in their initial version
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of Apples Vision Pro headset [10]. One particular use case for XR-OOM would be

the correct casting of sunlight and skylight on virtual objects and calculating and

superimposing correct shadows cast by these virtual objects. These kinds of tech-

nical advancements could be easily prototypes and explored as the next research

step to technically improve the XR-OOM system. Other aspects, such as model

fidelity and shader quality, are already very sophisticated.

Besides these rendering techniques, there are many other additional technical

challenges to situating virtual elements seamlessly into the view.

Occlusion is essential to place virtual objects into the real-world view properly.

Especially real-world objects with a lot of details, like trees, present a particular

challenge here. As new computer vision capabilities are being developed, combi-

nations of methods (e.g., spatial mapping and image segmentation [115]) might be

able to handle this kind of challenge.

Object tracking of real-world elements like cars on the road would provide new

capabilities for constructing scenarios. An existing traffic scenario could be de-

tected and augmented or used for an experiment.

Augmentation of parts of objects. Currently, many entire objects like geese,

pedestrians, and cars are augmented into the view. However, that ability to only

replace or modify parts of an object would give in particular XR-OOM the abil-

ity to expand the types of studies quickly. E.g., another vehicle in traffic could be

made to look like an autonomous vehicle.
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6.1.3 Building Models of Interaction

The simulators developed in this thesis aim to generate a rich stream of data

that can be leveraged to build models of human behavior. Understanding how

people behave and interact with systems is crucial in designing effective behav-

iors for autonomous systems. Moving forward, it is essential to systematically

expand the range of data collected and integrate additional sensor systems, such

as cameras, to track reactions and interactions more comprehensively. In particu-

lar, the XR-OOM simulator (see Figure 6.2) aims to incorporate additional systems

to construct complete traffic scenarios and analyze the specific details that influ-

ence system behavior. Ultimately, modeling behavior and studying the interaction

with autonomous vehicles are pivotal in informing the design of future behaviors

for these systems.

Figure 6.2: Capturing the participant with a regular camera allows us to measure
the participant’s motion and position.

6.1.4 Interaction with Automation

The simulations presented in this thesis are tools to explore how the interaction

between people and AVs takes place and unfolds. Even though these simulators
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are tested in this specific regime of automation research, the findings and some

of the systems can be extended to answer other (behavior) design questions for

systems that are being automated. In the following sections, these possibilities are

briefly sketched out to explore how some HRI and HCI interaction design chal-

lenges could be tackled using the developed simulator concepts.

Human Robot Interaction

The field of HRI has addressed many different challenges in designing robots,

their behaviors, and their appearance. The ACM/IEEE ‘International Conference

on Human-Robot Interaction’ was established in 2006 and explores these kinds of

research questions. Within this community, using immersive simulation is not a

new approach [51, 132, 193, 212]. However, specific open-ended simulations such

as the one presented in this thesis could be helpful for research questions within

the HRI context. I explored a few options on how this approach could be used for

HRI research questions.

Implicit Interaction. In social spaces, robots will need to use their existing modal-

ities like motion [184] or sound [152, 153] to facilitate smooth and implicit inter-

actions with the people in that space. The integration of robotic control systems

like ROS [170] in immersive simulations would give behavior designs the opportu-

nity to quickly iterate through different ideas. The direct integration with control

code would mean that the finished designs can be easily transferred to a real-world

robot.

Human Robot Teaming. In shared social spaces [195], understanding how team-

work [54, 149] unfolds as people and robots collaborate is key in optimizing the

teaming strategy. Reconstructing these interactions requires researchers to record

and playback the event streams to allow for qualitative analysis. To discover how
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cues are shared and used between agents (robots and people) to facilitate interac-

tion, simulations, in particular ReRun, offers us unique capabilities to record all

dynamic elements of a virtual environment. Making it a perfect tool to uncover

how interactions unfold.

Learning from Demonstration. One prominent approach in HRI is to design

robot behavior using demonstrations by a human (e.g. [11, 39]). The use of simu-

lated robots in a virtual reality space for this approach has multiple benefits. First,

it allows the participant to be immersed in the environment in which they are

demonstrating the motion, as compared to making these recordings in a lab set-

ting. Second, using VR for the recording of such demonstrations makes the data

collection process easier. Instead of having to transport an entire robot system, a

VR headset (e.g., Meta Quest 2) with the appropriate software can be used (com-

pare Section 4.2.3)

Wizard of Oz (WoZ) methods have been in use within HRI for a long time

(e.g. [214]). Combining WoZ methods with a shared virtual reality space like

StrangeLand would allow for new possibilities for scenario construction and wiz-

arding. This is because the researcher could fully embody and appear as the robot

agent in the shared virtual space to act out scenarios. This can be easily achieved

by mapping their tracked body to the motions of the virtual robot.

Human Computer Interaction

HCI similarly has challenges that could be addressed within immersive VR ap-

plications.

Simulating Context. Within End-User applications reacting to context is an es-

sential design challenge (e.g. [169]). The construction of different virtual reality
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contexts is an inherent feature of this technology. The combination of prototyp-

ing methods for End-User applications with VR allows for flexible context-aware

prototyping of interfaces.

Industrial Machine Operation. Immersive VR simulation could be used for both

interface design tasks as well as for the training of operators. With modern XR

headsets, this application could also include real-world interfaces while simulating

the dangerous elements of a system in its context.

These are just a few examples of HCI challenges in which the explored methods

in this thesis could find application.

6.2 Reception of the Work

Since the original publication of VR-OOM in 2018, XR-OOM, and StrangeLand

in 2022, the work presented in this thesis has gained tracking within the academic

research community.

6.2.1 Research Pickup at Cornell

For the different projects, different follow projects were picked up and have been

addressed in the respective sections.

VR-OOM was picked up by Yavo-Ayalon et al. [215] as described in Section 2.2.1

in which VR-OOM was to investigate if “Situated and shared experiences can mo-

tivate community members to plan shared action, promoting community engage-

ment.”

XR-OOM was integrated with the Portabello as shown in Section 3.7.4 by Fanjun

et al. [53] to improve tracking accuracy and speed with a mapped reference.
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StrangeLand got extended to include other traffic participants in a three-way

traffic interaction scenario see Section 4.5.2.

6.2.2 Research Pick-up Internationally

Through its adoption, my work has contributed to work in AV research and

Human-Robot-Interaction. Here are some of the most important works that cite

the work from my thesis:

VR-OOM Sportillo, Daniele, Alexis Paljic, and Luciano Ojeda. “Get ready for

automated driving using virtual reality.” Accident Analysis & Prevention

118 (2018): 102-113.

VR-OOM Gao, Yuxiang, and Chien-Ming Huang. “Evaluation of socially-aware

robot navigation.” Frontiers in Robotics and AI 8 (2022): 420.

VR-OOM Detjen, Henrik, Bastian Pfleging, and Stefan Schneegass. “A wizard

of oz field study to understand non-driving-related activities, trust, and

acceptance of automated vehicles.” In 12th International Conference on Au-

tomotive User Interfaces and Interactive Vehicular Applications, pp. 19-29.

2020.

XR-OOM Wilson, Graham, Mark McGill, Daniel Medeiros, and Stephen Brew-

ster. “A Lack of Restraint: Comparing Virtual Reality Interaction Tech-

niques for Constrained Transport Seating.” IEEE Transactions on Visual-

ization and Computer Graphics 29, no. 5 (2023): 2390-2400.

XR-OOM McGill, Mark, Graham Wilson, Daniel Medeiros, and Stephen An-

thony Brewster. “PassengXR: A Low Cost Platform for Any-Car, Multi-

User, Motion-Based Passenger XR Experiences.” In Proceedings of the 35th
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Annual ACM Symposium on User Interface Software and Technology, pp.

1-15. 2022.

StrangeLand Lee, Seong Hee, Nicholas Britten, Avram Block, Aryaman Pandya,

Malte F. Jung, and Paul Schmitt. “Coming In! Communicating Lane Change

Intent in Autonomous Vehicles.” In Companion of the 2023 ACM/IEEE In-

ternational Conference on Human-Robot Interaction, pp. 394-398. 2023.Gao,

Yuxiang, and Chien-Ming Huang. “Evaluation of socially-aware robot nav-

igation.”

StrangeLand Nai, Wei, Zan Yang, Yinzhen Wei, Jierui Sang, Jialu Wang, Zhou

Wang, and Peiyu Mo. “A comprehensive review of driving style evalua-

tion approaches and product designs applied to vehicle usage-based in-

surance.” Sustainability 14, no. 13 (2022): 7705.
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6.3 Closing

In conclusion, this thesis has highlighted the significance of driving simulation

environments in the field of automotive design and human factors engineering.

The three simulators offer a controlled and replicable setting to assess the impacts

of interfaces, interactions, and intelligent behaviors exhibited by self-directed sys-

tems. By exploring new and immersive simulation technologies, we have created

the ability to explore the dynamics of trust, teamwork, and interaction within the

context of Autonomous Vehicles.

This research has examined various orbits of AV interaction, spanning from the

interior of the vehicle to the broader traffic environment, enabling researchers and

car manufacturers to understand how trust, resolution of ambiguous situations,

and the evolving role of human control change with their designs. The insights

gained from this work contribute to a much deeper understanding of how simula-

tion can enhance our understanding of HRI and HCI interactions and inform the

design of future autonomous systems. This has already been seen by the pickup

from the research community.
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[175] Paul Sârbescu, Predrag Stanojevic, and Dragan Jovanovic. A cross-cultural

analysis of aggressive driving: evidence from serbia and romania. Trans-

portation research part F: traffic psychology and behaviour, 24:210–217, 2014. ISSN

1369-8478. doi: 10.1016/j.trf.2014.04.002. URL http://dx.doi.org/10.

1016/j.trf.2014.04.002.

[176] Anna Schieben, Matthias Heesen, Julian Schindler, Johann Kelsch, and Frank

Flemisch. The theater-system technique: Agile designing and testing of sys-

tem behavior and interaction, applied to highly automated vehicles. In Pro-

ceedings of the 1st International Conference on Automotive User Interfaces and

Interactive Vehicular Applications, pages 43–46. ACM, 2009.

[177] G Schmidt, M Kiss, E Babbel, and A Galla. The wizard on wheels: Rapid

prototyping and user testing of future driver assistance using wizard of oz

technique in a vehicle. In Proceedings of the FISITA 2008 World Automotive

Congress, Munich, 2008.

[178] Paul Schmitt, Nicholas Britten, JiHyun Jeong, Amelia Coffey, Kevin Clark,

Shweta Sunil Kothawade, Elena Corina Grigore, Adam Khaw, Christopher

Konopka, Linh Pham, Kim Ryan, Christopher Schmitt, and Emilio Frazzoli.

Can cars gesture? a case for expressive behavior within autonomous vehicle

177

http://www.safemotorist.com/Articles/Right_of_Way.aspx
http://www.safemotorist.com/Articles/Right_of_Way.aspx
http://dx.doi.org/10.1016/j.trf.2014.04.002
http://dx.doi.org/10.1016/j.trf.2014.04.002


and pedestrian interactions. IEEE Robotics and Automation Letters, 7(2):1416–

1423, 2022. doi: 10.1109/LRA.2021.3138161.

[179] Paul Schmitt, Nicholas Britten, JiHyun Jeong, Amelia Coffey, Kevin Clark,

Shweta Sunil Kothawade, Elena Corina Grigore, Adam Khaw, Christopher

Konopka, Linh Pham, Kim Ryan, Christopher Schmitt, Aryaman Pandya,

and Emilio Frazzoli. nureality: A vr environment for research of pedestrian

and autonomous vehicle interactions, 2022.

[180] Brandon Schoettle and Michael Sivak. A preliminary analysis of real-world

crashes involving self-driving vehicles. University of Michigan Transportation

Research Institute, 2015.

[181] David Serje and Estefany Acuña. Driving and flying simulators: a review

on relevant considerations and trends. Transportation research record, 2676(3):

551–570, 2022.

[182] Orit Shechtman, Sherrilene Classen, Kezia Awadzi, and William Mann.

Comparison of driving errors between on-the-road and simulated driving

assessment: a validation study. Traffic injury prevention, 10(4):379–385, 2009.

[183] Gustavo Silvera, Abhijat Biswas, and Henny Admoni. Dreyevr: Democratiz-

ing virtual reality driving simulation for behavioural & interaction research.

In HRI, pages 639–643, 2022.

[184] David Sirkin, Kerstin Fischer, Lars Jensen, and Wendy Ju. Eliciting Con-

versation in Robot Vehicle Interactions. In 2016 AAAI Spring Symposium Se-

ries, March 2016. URL http://www.aaai.org/ocs/index.php/SSS/

SSS16/paper/view/12755.

178

http://www.aaai.org/ocs/index.php/SSS/SSS16/paper/view/12755
http://www.aaai.org/ocs/index.php/SSS/SSS16/paper/view/12755


[185] SKARREDGHOST. The metaverse enters the gartner hype cycle (but with a

10+ years outlook), Aug 2022. URL https://skarredghost.com/2022/

08/20/metaverse-gartner-hype-cycle/.

[186] JJ Slob. State-of-the-art driving simulators, a literature survey. DCT report,

107, 2008.

[187] Joseph Smyth, Jonathan Robinson, Rebecca Burridge, Paul Jennings, and

Roger Woodman. Towards the management and mitigation of motion

sickness–an update to the field. In Congress of the International Ergonomics As-

sociation, pages 834–840. Springer, Springer International Publishing, 2021.

[188] Inc. StereoLabs. Meet zed 2, December 2019. URL https://www.

stereolabs.com/zed-2/.

[189] Jonathan Stevens, Peter Kincaid, and Robert Sottilare. Visual modality re-

search in virtual and mixed reality simulation. The Journal of Defense Modeling

and Simulation, 12(4):519–537, 2015.

[190] Jack Stewart. Humans just can’t stop rear-ending self-driving cars-

let’s figure out why, Oct 2018. URL https://www.wired.com/

story/self-driving-car-crashes-rear-endings-why-charts-

statistics/.
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APPENDIX A

APPENDIX

A.1 External Code Repositories

VR-OOM https://github.com/FAR-Lab/vr-oom

XR-OOM https://github.com/FAR-Lab/XR-OOM

XR-OOM- localization https://github.com/FAR-Lab/xr-oom-localization

Checklist template https://github.com/DavidGoedicke/SimpleToDoList

StrangeLand https://github.com/FAR-Lab/StrangeLand

ReRun https://github.com/FAR-Lab/Rerun

StrangeLand Data Analysis https://github.com/FAR-Lab/XCulturalDataAnalysis

StrangeLand Visualization https://github.com/FAR-Lab/VideoVisualizationXC

A.2 XR-OOM Appendix

A.2.1 System Implementation Details

In this appendix section, we wanted to share the specific technical details for our

prototype implementation, to make replication easier.

Rendering computer The computational requirements for the graphics rendering

are driven by the requirements from the Varjo XR-1 headset1. The rendering com-

puter also handles the tracking of the participant’s gaze within the mixed real-

ity environment, and recording of the headsets video stream. Our setup uses a

1https://varjo.com/use-center/get-started/system-requirements/
headsets/xr-1-vr/
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custom-built desktop tower computer; the essential components are: Mainboard:

Gigabyte Z390 Designare, CPU: i9 9900K, RAM: 2×16GB 3200 DDR4, GPU: NVIDA

2080 Ti, Power supply: SeaSonic Focus Plus 750 W Platinum.

While a laptop computer would be preferable to a desktop computer for this sys-

tem, at submission time, only one laptop was available that would meet the com-

putational demands of the XR-OOM system, and all such platforms were in short

supply due to the pandemic-related worldwide chip shortage. It is not clear that

the one laptop that meets the computational needs would be able to run within

the thermal limits of the vehicle, because vehicles are significantly warmer than

the information work environments laptops are generally designed for.

Networking The SmartTrack3 is connected to the graphics rendering computer

via a 5-port Ethernet Switch (NETGEAR GS105GE). Additionally, a Netgear M1

router provided internet access (used to upload experiment data), and to act as the

DHCP server.

Power System The computer, headset (Varjo XR-1), networking, and in-car local-

ization (SmartTrack3) have a total rated power draw of about 850 W; this is more

than is available from most vehicles via the 12 V power ports. In our set-up, the

XR-OOM system is powered by a 1.5 kW modified sine-wave power supply that

is supplied by three 12 V deep-cycle batteries. Additionally, a GoalZero 400 that

was continuously charged from the Cars 12V outlet was providing power some of

the hardware, in a rudimentary attempt to load balance the power requirement.

LIDAR A OS1-64 2nd Generation LIDAR sensor from Ouster was mounted at the

front of the vehicle, running at 1024 beams with 20 HZ. This sensor was used to

build a depth map of the environment around the research vehicle.
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IMU An Xsense MTi-300 IMU was mounted in the center of the vehicle, and con-

nected over USB to the ROS core computer; this enabled tracking of the orientation

of the vehicle in space.

Odometry Odometry data from our research vehicle, a 2015 Toyota PriusV, was

obtained from the vehicle’s CAN Bus using a Korlan USB2CAN module. This was

primarily used to track the forward velocity of the vehicle; data was sent over USB

to the ROS core computer.

The pace of hardware development and Moore’s Law predicts that the sys-

tem performance specifications here will likely be more easily achieved using

consumer-grade equipment in the hopefully non-distant future.

A.2.2 Self-reported Measures

We also recorded results from each participant rating their own assessments for

each condition.

Following each condition’s activity, participants were asked to respond to four

questions on a 5-point Likert scale to assess their impressions of ease of use, com-

fort, control, and performance. The responses were reverse-scored where neces-

sary so that higher values (5) mean a more favorable response (i.e., more comfort-

able, easier driving, more control, better performance) and lower values (1) mean

a less favorable response. (See Appendix for the questions sheets)

The responses to these four questions generally agree and are highly correlated.

Comparing driving condition A (no headset) to conditions B and C (with the head-

set), we see condition A was rated, on average, 3.7 for ease of use while the headset

conditions were rated 2.85. Similarly, for comfort, condition A was rated 4.3 while
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Prompt
Condition

A
Condition

B
Condition

C
Ease of Use 3.7 3.3 2.4

Comfort 4.3 3.2 2.6
Control 4.3 3.9 3.3

Self-Reported
Performance 3.9 3.0 2.8

Table A.1: Average ratings (out of 5) across participants per driving condition,
where 1 was least favorable and 5 was most favorable

the headset conditions were rated 2.9. For control, condition A was rated 4.3 and

the headset conditions were rated 3.6. Finally, for self-rated performance, condi-

tion A was rated 3.9 and the headset conditions were rated 2.9. This shows that,

participants found the headset more difficult to drive with and rated it a full point

lower or more in every category. Similarly, if we compare the two headset condi-

tions B (real cones) and C (virtual cones), we see that, on average, condition B was

rated 3.3 for ease of use while condition C was rated 2.4. For comfort, condition

B was rated 3.2 and condition C was rated 2.6. For control, condition B was rated

3.9 and condition C was rated 3.3. And for self-reported performance, condition B

was rated 3.0 and condition C was rated 2.8. Thus, participants not only found the

headset conditions more difficult, they also generally found the virtual cones more

difficult than the real cones (again often with a full point difference in rating). The

one disagreement amongst the categories here is that the participants appeared to

believe they performed similarly in conditions B and C even though they found

condition C to be less easy to use, less comfortable, and felt they had less control.

The distribution of these responses by condition are shown in Figure A.1. Con-

dition C (with VR Headset and virtual cones) was more consistently rated as less

easy and less comfortable. Whereas condition A (normal driving condition with-

out headset) was rated consistently with a high self-reported performance.
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Figure A.1: Distribution of responses to survey prompts by task (dotted line =
mean, solid line = median)

An exploratory factor analysis (EFA) was run on the responses to determine

inter-item agreement. The EFA identifies a single factor forms across all four ques-

tions where none of the questions are unique (all uniqueness scores ¡ 0.48). Inter-

question correlations, as mentioned earlier, are quite high. This indicates that these

dimensions generally agree. We adjusted the ordering of the conditions in order

to counterbalance our results and remove ordering effects. The final average par-

ticipant responses for each condition by prompt is shown in Table A.1. Again, this

is on a Likert scale from 1 to 5 where 1 is a less favorable response and 5 is a more

favorable response. This clearly shows that condition favorability is consistently

ranked A, B, and C from most favorable to least favorable across the four metrics

where the widest range is on comfort.

Besides the Likert scale questions, we also asked the participant an additional

four open-ended questions after each scenario. These questions attempted to iden-

tify difficulties and the general impression the participant had while completing

the driving tasks.

The most relevant results are from the questions Q1: Was there anything that felt

outside of your control?, Q2:Was there a particularly hard task?, and Q3:Was there a
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Figure A.2: Correlation matrix for the four survey questions

particularly easy task?.

Q1: For conditions A and B the most frequent response was a sense of unfa-

miliarity with the vehicle. For Condition C most participants mention the virtual

cones as an aspect that was outside of their control. The cones could sometimes

move somewhat erratically if the participant made fast head movements.

Q2: The slalom task(step2) was clearly the hardest task for people to complete

with the most mistakes. This was backed up by the self report results where many
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participants mentioned “Step 2” being the hardest independent of the condition.

Q4: Participants report that the stop line task (Step 4) was the easiest to complete.
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A.2.3 Standard Operating Procedure

In the development of XR-OOM, a comprehensive Standard Operating Proce-

dure (SOP) was meticulously crafted. This SOP was essential for several reasons.

First and foremost, it prioritized the safety of participants and researchers, out-

lining specific measures to avoid COVID infections and ensure a secure testing

environment. Additionally, the detailed SOP facilitated the replication and acces-

sibility of XR-OOM to other researchers, enabling them to adopt and utilize the

system effectively for their own studies.

1

EXPERIMENT PREPARATION
Goal Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TURN-ON OUTPUT & 12V INPUT
360◦GoPro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .POWER-ON & VERIFY 5V DC
Outside GoPro . . . . . . . . . . . . . . . . . . . . . . . . . . . POWER-ON & VERIFY 5V DC
LIDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOUNT
AR-Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(RE)BOOT

- Plugin Power
- Turn on 1500W DC/AC

ART Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . START & VERIFY
XR-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . START & VERIFY

- Video pass through
- No Screen Tearing
- Low frame-delay
- Pose Tracking

ROS Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (RE)BOOT
- Run Setup ./SetupExperiment.sh
- LIDAR - verify
- IMU - verify
- CanBus - verify

Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Drive Vehicle to starting point
- Start AC

Participant Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Varjo XR-1
- Cleaned Headset Face covers
- Participant Instructions
- Alcohol wipes

2

PARTICIPANT INTRODUCTION
Read Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- Thank you for coming! I am [Researcher’s Name] working for Cornell and
I’ll be supervising your driving experiment for the next 30 to 40 minutes. Before
we get started, a couple of details about the study.

- There are 2 different tasks, cockpit and driving tasks. You will perform both
of them three times. Twice with, and once without the MR-Headset.

- This is a test of the system not of you. If its hard for you it means the system
needs to be better.

- Do not do anything that makes you feel unsafe and out of control.
- Please note that you can stop the experiment at anytime for any reason.

Please let us know if you feel motion sick or unwell in any other way.

- Drive Slowly!
- We do not expect the visual system to fail, but if it does, just stop the vehicle

by stepping on the brake.
- Please review and follow the hygiene standards.

Show Participant . . . . . . . . . . . . . . . . . . . . . . . . . GLOVES & ALCOHOL WIPES

Figure A.3: First two pages of the SOP to run the the XR-OOM simulator.
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3

EXPERIMENT PROCEDURE
Experiment Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Participant Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Condition N (No headset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- Complete Cockpit Tasks
- Complete Driving Tasks 1-5
- Condition Questionnaire

Condition with (Headset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Explain: How to put on and off the headset.
- Verify MR headset functionality with participant
- Complete Cockpit Tasks
- Complete Driving Tasks 1-5
- Condition Questionnaire

Post Experiment Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Close Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Store Data . . . . . . . . . . . . . . . . . . . . . . . . . . COMBINE. TECH. CORNELL. EDU: 5000

7

ACCIDENT CHECKLIST
- Stop the study!
- Check for injury and triage any medical situation.
- In case of serious injuries, call 911
- Inform the owner if we hit any parked car or traffic device
- Call the police and report damage if there is significant damage: (212)

832-4545
- Exchange contact and insurance information with other parties
- Note traffic and weather conditions and sketch a diagram of the collision

scene.
- Alert the University and associated insurance within 24 hours.
- Alert IRB that there was an adverse event, and not continue research until

we got further permission.

The next pages are for the participant

Figure A.4: Last two pages of the SOP to run the the XR-OOM simulator.
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A.2.4 Cockpit Tasks

8
1 HYGIENE STANDARD FOR RESEARCH VEHICLE USE

Participants, research and safety driver should always wear a mask.
• Cleaning wipes, and gloves need to be accessible to the participant.
• Extra hygiene covers for the AR headset are available.
• Before each research day, the researcher will wipe the common touch

areas in the vehicle (steering wheel, door handles). The AR Headset will
be wiped for every user.

COCKPIT TASKS
Turn Vehicle On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjust seat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Put on Seat belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjust mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LEFT, RIGHT & CENTER
Turn signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LEFT & RIGHT
Headlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TURN ON/OFF
Wipers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hazard lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parking brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ENGAGE & RELEASE
Verbally explain which indicator lights are visible . . . . . . . . . . . . . . . .

Now please follow the driving instructions shown in the next few pages.
There are 7 steps, all leading into each other. The black dots on the pages
signify the traffic cones in front of you.

Please find your bearing before you start driving.

Figure A.5: Print-out of the cockpit tasks we asked participants to conduct. The
checklists template can be found in Appendix A.1.
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A.2.5 Trajectory Comparison

The driving performance was measured using post-facto analysis by computing

the Fréchet distance between the normalized path driven by participants, and an

”ideal” path. These paths were confirmed against observable driving performance

in the participant video recordings.

Since the tracks were normalized for the comparison, the Fréchet distance does

not measure in meters. However, the range of value still represent a correct and

incorrect execution of the tasks, as shown in Figure A.8. Large Fréchet distance

indicates that participant’s driving path deviates from the path in instruction. For

example, when driving under condition C, participant 5 made a right turn earlier

than instructed in step 1. Participant 5 did not repeat this mistake under condition

A and completed step 1 successfully. Both paths are visualized in Figure A.7. Un-

der condition C, participant 5’s mistake leads to a Fréchet distance of 0.415, and

the Fréchet distance reduces to 0.146 when participant 5 followed the instructed

path successfully under condition A.
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Figure A.6: Synthetic ground truth path.

Figure A.7: Comparison between participant 5’s driving performance for step 1
under two conditions.
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Figure A.8: Trajectories for each participant per condition.

A.3 StrangeLand

A.3.1 Questionnaire

These are the different questionnaires used during the study.
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Certainty

After each scenario, we plan to always ask 3 questions about certainty:

I felt the other driver(s) drove well:

• Strongly Agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

I clearly understood the intent of the other driver(s):

• Strongly Agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

I felt confident about my own actions

• Strongly Agree

• Agree

• Neutral

• Disagree

• Strongly Disagree

Behaviors

We ask about these behaviors depending on the interaction that the user gets

placed in. Below are the questions asking about specific behaviors.

Turn Signals
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Which turn signals, if any, did you use?

• No turn signals

• Left turn signal

• Right turn signal

Which turn signals, if any, did the other car use?

• No turn signals

• Left turn signal

• Right turn signal

Did you intend for that signal to be seen by another driver in particular?

• No

• Yes

• Unsure

Did you intend for that signal to be seen by more than one driver?

• No

• Yes

• Unsure

Did you interpret the signal as meant for you in particular?

• No

• Yes

• Unsure

False Starts

Who was the first to completely cross the intersection?

• Me

• The other driver
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• Unsure

At the intersection, who moved first?

• Me

• The other driver

• We moved simultaneously

• Not sure

Did you stop again after moving?

• No

• Yes

• Unsure

Did the other driver stop again after moving?

• No

• Yes

• Unsure

Did either of you stop again after moving?

• I stopped again

• The other driver stopped again

• Neither of us stopped again

• Both of us stopped again

Why did you move first?

• Because I was uncertain about whose turn it was

• Because I realized that it was my turn

• Other

• Unsure
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Why did you not stop again?

• Because I was certain that it was my turn

• Because the other driver realized it was my turn

• Because the other driver gave me their turn

• Because I stole the other driver’s turn

• Other

• Unsure

Why did you stop again?

• Because I was still uncertain about whose turn it was

• Because I realized it was the other driver’s turn

• Because the other driver stole my turn

• Other

• Unsure

Why did the other driver move first?

• Because they were uncertain about whose turn it was

• Because it was their turn

• Other

• Unsure

Why didn’t the other driver stop again?

• Because they were certain that it was their turn

• Because I realized it was their turn

• Because the other driver gave me their turn

• Because they stole my turn

• Other

• Unsure

Why did the other driver stop again?
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• Because they were still uncertain about whose turn it was

• Because they realized it was my turn

• Other

• Unsure

Why did you and the other driver move simultaneously?

• Because we were both uncertain about whose turn it was

• Because we both thought it was our own turn

• Other

• I don’t know why

Overtaking Who overtook the other first?

• Me

• The other driver

• Neither of us overtook the other

• Not sure

After overtaking the other driver, did you remain ahead of them?

• No

• Yes

• Unsure

Did you overtake the other driver a second time?

• No

• Yes

• Unsure

After the other driver overtook you, did they remain ahead of you?

• No
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• Yes

• Unsure

Did the other driver overtake you a second time?

• No

• Yes

• Unsure

Why did you overtake the other driver?

• I didn’t overtake the other driver on purpose

• The other driver was too slow

• I was going to be late for my flight

• I like to drive fast

• I like to drive faster than other people

• Other

• Unsure

Why didn’t you remain ahead?

• The other driver sped up

• The other driver kept going the same speed

• I slowed down

• I kept going the same speed

• I realized that I had enough time to make my flight

• I realized that I was going too fast

• Other

• Unsure

Why did you remain ahead?

• The other driver slowed down
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• The other driver kept going the same speed

• I sped up

• I kept going the same speed

• I was still worried about catching my flight

• I wanted to keep driving fast

• I wanted to keep driving faster than the other driver

• Other

• Unsure

Why did the other driver overtake you?

• The other driver didn’t overtake me on purpose

• I was driving too slow

• The other driver was worried about being somewhere on time

• The other driver likes to drive fast

• Other

• Unsure

Why didn’t the other driver remain ahead?

• I sped up

• I kept going the same speed

• The other driver slowed down

• The other driver kept going the same speed

• The other driver realized that they had enough time

• The other driver realized that they were going too fast

• Other

• Unsure

Why did the other driver remain ahead?

• I slowed down
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• I kept going the same speed

• The other driver sped up

• The other driver kept going the same speed

• The other driver was still worried about being somewhere on time

• The other driver wanted to keep driving fast

• The other driver wanted to keep driving faster than other people

• Other

• Unsure

Cutting off

Did you cut off the other driver?

• No

• Yes

• Unsure

Did the other driver cut you off?

• No

• Yes

• Unsure

Did you intend to cut off the other driver?

• No

• Yes

• Unsure

Why did you cut off the other driver?

• The other driver was in my way

• So that I could make my exit
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• To punish the other driver for something they did

• For fun

• To reach my destination faster

• To prevent the other driver from reaching their destination

• Other

• Unsure

Did the other driver intend to cut you off?

• No

• Yes

• Unsure

Why did the other driver cut you off?

• I was in the other driver’s way

• So that they could make their exit

• To punish me for something I did

• For fun

• To reach their destination faster

• To prevent me from reaching my destination

• Other

• Unsure

Tailgating

Did you tailgate the other driver?

• No

• Yes

• Unsure

Did the other driver retaliate?

• No
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• Yes

• Unsure

Did the other driver tailgate you?

• No

• Yes

• Unsure

Did you retaliate?

• No

• Yes

• Unsure

Why did you tailgate the other driver?

• To punish the other driver for something they did

• Because I was impatient

• For fun

• Other

• Unsure

Why did the other driver tailgate you?

• To punish me for something I did

• Because they were impatient

• For fun

• Other

• Unsure

Mutual Gaze

Did you and the other driver make eye contact?
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• Yes

• No

• No, but I was trying to make eye contact with the other driver

• No, but the other driver was trying to make eye contact with me

• I don’t know

Who tried to first establish eye contact?

• Me

• The other driver

• Both of us

• Unclear

Why did you attempt to make eye contact with the other driver?

• To let the other driver know that I was moving

• To let the other driver know they could move

• To check the other driver’s attention

• Other

Why didn’t you attempt to make eye contact with the other driver?

• I didn’t want to validate the other driver’s behavior

• I was focused on a more important task
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